

R
E
A

C
T
 C

H
E
A
T
S
H

E
E
T

IN
S

T
A

L
L
A
T
IO

N
S
P

E
C

IA
L
 P

R
O

P
E
R

T
IE

S

R
e
a
c
t

<
s
c
r
i
p
t

s
r
c
=
"
h
t
t
p
s
:
/
/
u
n
p
k
g
.
c
o
m
/
r
e
a
c
t
@
1
5
/
d
i
s
t
/
r
e
a
c
t
.
j
s
"
>
<
/
s
c
r
i
p
t
>

$

$

n
p
m

i
n
s
t
a
l
l

r
e
a
c
t

-
-
s
a
v
e

$

$

b
o
w
e
r

i
n
s
t
a
l
l

r
e
a
c
t

-
-
s
a
v
e

R
e
a
c
t

D
O

M

<
s
c
r
i
p
t

s
r
c
=
"
h
t
t
p
s
:
/
/
u
n
p
k
g
.
c
o
m
/
r
e
a
c
t
-
d
o
m
@
1
5
/
d
i
s
t
/
r
e
a
c
t
-
d
o
m
.
j
s
"
>
<
/
s
c
r
i
p
t
>

$

n
p
m

i
n
s
t
a
l
l

r
e
a
c
t
-
d
o
m

$

b
o
w
e
r

i
n
s
t
a
l
l

r
e
a
c
t
-
d
o
m

-
-
s
a
v
e

k
e
y
—

U
n
iq

u
e
 i
d
e
n
ti
fi
e
r

fo
r

a
n
 e

le
m

e
n
t

to
 t

u
rn

 a
rr

a
ys

/
li
s
ts

 i
n
to

 h
a
s
h
e
s
 f
o
r

b
e
tt

e
r

p
e
rf

o
rm

a
n
c
e
.
F
o
r

e
xa

m
p
le

:
k
e
y
=
{
i
d
}
.

r
e
f
—

R
e
fe

re
n
c
e
 t

o
 a

n
 e

le
m

e
n
t

vi
a
 t
h
i
s
.
r
e
f
s
.
N
A
M
E
.
F
o
r

e
xa

m
p
le

:
r
e
f
=
"
e
m
a
i
l
"
 w

il
l
c
re

a
te

 a

t
h
i
s
.
r
e
f
s
.
e
m
a
i
l
 D

O
M

 n
o
d
e
 o

r
R
e
a
c
t
D
O
M
.
f
i
n
d
D
O
M
N
o
d
e
(
t
h
i
s
.
r
e
f
s
.
e
m
a
i
l
)
.

s
t
y
l
e
—

A
c
c
e
p
ts

 a
n
 o

b
je

c
t
fo

r
c
a
m

e
lC

a
s
e
d
 C

S
S

 s
ty

le
s
 i
n
s
te

a
d
 o

f
a
 s

tr
in

g
 (
im

m
u
ta

b
le

 s
in

c
e
 v

0
.1

4
).

F
o
r

e
xa

m
p
le

:
s
t
y
l
e
=
{
{
c
o
l
o
r
:

r
e
d
}
}
.

c
l
a
s
s
N
a
m
e
—

H
T
M

L
 c

la
s
s
 a

tt
ri
b
u
te

.
F
o
r

e
xa

m
p
le

:
c
l
a
s
s
N
a
m
e
=
"
b
t
n
"
.

h
t
m
l
F
o
r
—

H
T
M

L
 f
o
r

a
tt

ri
b
u
te

.
F
o
r

e
xa

m
p
le

:
h
t
m
l
F
o
r
=
"
e
m
a
i
l
"
.

d
a
n
g
e
r
o
u
s
l
y
S
e
t
I
n
n
e
r
H
T
M
L
—

S
e
ts

 i
n
n
e
r

H
T
M

L
 t

o
 r

a
w

 H
T
M

L
 b

y
p
ro

vi
d
in

g
 a

n
 o

b
je

c
t

w
it
h
 t

h
e
 k

e
y

_
_
h
t
m
l
.

c
h
i
l
d
r
e
n
—

S
e
ts

 t
h
e
 c

o
n
te

n
t

o
f
th

e
 e

le
m

e
n
t

vi
a
 t
h
i
s
.
p
r
o
p
s
.
c
h
i
l
d
r
e
n
.

F
o
r

e
xa

m
p
le

:
t
h
i
s
.
p
r
o
p
s
.
c
h
i
l
d
r
e
n
[
0
]
.

d
a
t
a
-
N
A
M
E
—

C
u
s
to

m
 a

tt
ri
b
u
te

.
F
o
r

e
xa

m
p
le

:
d
a
t
a
-
t
o
o
l
t
i
p
-
t
e
x
t
=
"
.
.
.
"
.

R
E
N

D
E
R

IN
G

E
S
5

R
e
a
c
t
D
O
M
.
r
e
n
d
e
r
(

R
e
a
c
t
.
c
r
e
a
t
e
E
l
e
m
e
n
t
(

L
i
n
k
,

{
h
r
e
f
:

'
h
t
t
p
s
:
/
/
N
o
d
e
.
U
n
i
v
e
r
s
i
t
y
'
}

)

)
,

d
o
c
u
m
e
n
t
.
g
e
t
E
l
e
m
e
n
t
B
y
I
d
(
'
m
e
n
u
'
)

) E
S
5
+
JS

X

R
e
a
c
t
D
O
M
.
r
e
n
d
e
r
(

<
L
i
n
k

h
r
e
f
=
'
h
t
t
p
s
:
/
/
N
o
d
e
.
U
n
i
v
e
r
s
i
t
y
'
/
>
,

d
o
c
u
m
e
n
t
.
g
e
t
E
l
e
m
e
n
t
B
y
I
d
(
'
m
e
n
u
'
)

) S
e
rv

e
r-
s
id

e
 r

e
n
d
e
ri
n
g

c
o
n
s
t

R
e
a
c
t
D
O
M
S
e
r
v
e
r

=

r
e
q
u
i
r
e
(
'
r
e
a
c
t
-
d
o
m
/
s
e
r
v
e
r
'
)

R
e
a
c
t
D
O
M
S
e
r
v
e
r
.
r
e
n
d
e
r
T
o
S
t
r
i
n
g
(
L
i
n
k
,

{
h
r
e
f
:

'
h
t
t
p
s
:
/
/
N
o
d
e
.
U
n
i
v
e
r
s
i
t
y
'
}
)

R
e
a
c
t
D
O
M
S
e
r
v
e
r
.
r
e
n
d
e
r
T
o
S
t
a
t
i
c
M
a
r
k
u
p
(
L
i
n
k
,

{
h
r
e
f
:

➥
 '
h
t
t
p
s
:
/
/
N
o
d
e
.
U
n
i
v
e
r
s
i
t
y
'
}
)

L
lF

E
C

Y
C

L
E
 E

V
E
N

T
S

c
o
m
p
o
n
e
n
t
W
i
l
l
M
o
u
n
t

f
u
n
c
t
i
o
n
(
)

c
o
m
p
o
n
e
n
t
D
i
d
M
o
u
n
t

f
u
n
c
t
i
o
n
(
)

c
o
m
p
o
n
e
n
t
W
i
l
l
R
e
c
e
i
v
e
P
r
o
p
s

f
u
n
c
t
i
o
n
(
n
e
x
t
P
r
o
p
s
)

s
h
o
u
l
d
C
o
m
p
o
n
e
n
t
U
p
d
a
t
e

f
u
n
c
t
i
o
n
(
n
e
x
t
P
r
o
p
s
,

n
e
x
t
S
t
a
t
e
)

-
>

b
o
o
l

c
o
m
p
o
n
e
n
t
W
i
l
l
U
p
d
a
t
e

f
u
n
c
t
i
o
n
(
n
e
x
t
P
r
o
p
s
,

n
e
x
t
S
t
a
t
e
)

c
o
m
p
o
n
e
n
t
D
i
d
U
p
d
a
t
e

f
u
n
c
t
i
o
n
(
p
r
e
v
P
r
o
p
s
,

p
r
e
v
S
t
a
t
e
)

c
o
m
p
o
n
e
n
t
W
i
l
l
U
n
m
o
u
n
t

f
u
n
c
t
i
o
n
(
)

C
O

M
P

O
N

E
N

T
 P

R
O

P
E
R

T
IE

S
 A

N
D

 M
E
T
H

O
D

S

P
ro

p
e
rt

ie
s

t
h
i
s
.
r
e
f
s
—

L
is

ts
 c

o
m

p
o
n
e
n
ts

 w
it
h
 a

 r
e
f
 p

ro
p
e
rt

y.
t
h
i
s
.
p
r
o
p
s
—

L
is

ts
 a

n
y

p
ro

p
e
rt

ie
s
 p

a
s
s
e
d
 t

o
 a

n
 e

le
m

e
n
t

(i
m

m
u
ta

b
le

).
t
h
i
s
.
s
t
a
t
e
—

L
is

ts
 s

ta
te

s
 s

e
t

b
y
s
e
t
S
t
a
t
e
 a

n
d
 g
e
t
I
n
i
t
i
a
l
S
t
a
t
e
 (
m

u
ta

b
le

).
 A

vo
id

 s
e
tt

in
g

s
ta

te
 m

a
n
u
a
ll
y

w
it
h
 t
h
i
s
.
s
t
a
t
e
=
.
.
.

t
h
i
s
.
i
s
M
o
u
n
t
e
d
—

F
la

g
s
 w

h
e
th

e
r

th
e
 e

le
m

e
n
t

h
a
s
 a

 c
o
rr

e
s
p
o
n
d
in

g
 D

O
M

 n
o
d
e
.

M
e
th

o
d
s

s
e
t
S
t
a
t
e
(
c
h
a
n
g
e
s
)
—

C
h
a
n
g
e
s
 s

ta
te

 (
p
a
rt

ia
ll
y)

 t
o
 t
h
i
s
.
s
t
a
t
e
,

a
n
d
 t

ri
g
g
e
rs

 a
 r

e
re

n
d
e
r

r
e
p
l
a
c
e
S
t
a
t
e
(
n
e
w
S
t
a
t
e
)
—

R
e
p
la

c
e
s
 t
h
i
s
.
s
t
a
t
e
,

a
n
d
 t

ri
g
g
e
rs

 a
 r

e
re

n
d
e
r

f
o
r
c
e
U
p
d
a
t
e
(
)
—

Tr
ig

g
e
rs

 a
n
 i
m

m
e
d
ia

te
 D

O
M

 r
e
re

n
d
e
r

p
ro

p
T
y
p
e
s

Ty
p
e
s
 a

va
il
a
b
le

 u
n
d
e
r
R
e
a
c
t
.
P
r
o
p
T
y
p
e
s
:

a
n
y

a
r
r
a
y

b
o
o
l

e
l
e
m
e
n
t

f
u
n
c

n
o
d
e

n
u
m
b
e
r

o
b
j
e
c
t

s
t
r
i
n
g

To
 m

a
k
e
 a

 p
ro

p
e
rt

y
re

q
u
ir
e
d
 (
w

a
rn

in
g
 o

n
ly

),
 a

p
p
e
n
d
 .
i
s
R
e
q
u
i
r
e
d
.

M
o
re

 m
e
th

o
d
s

i
n
s
t
a
n
c
e
O
f
(
c
o
n
s
t
r
u
c
t
o
r
)

o
n
e
O
f

(
[
'
N
e
w
s
'
,

'
P
h
o
t
o
s
'
]
)

o
n
e
O
f
T
y
p
e
(
[
p
r
o
p
T
y
p
e
,

p
r
o
p
T
y
p
e
]
)

C
u
s
to

m
 v

a
li
d
a
ti

o
n

p
r
o
p
T
y
p
e
s
:

{

c
u
s
t
o
m
P
r
o
p
:

f
u
n
c
t
i
o
n
(
p
r
o
p
s
,

p
r
o
p
N
a
m
e
,

c
o
m
p
o
n
e
n
t
N
a
m
e
)

{

i
f

(
!
/
r
e
g
E
x
P
a
t
t
e
r
n
/
.
t
e
s
t
(
p
r
o
p
s
[
p
r
o
p
N
a
m
e
]
)
)

{

r
e
t
u
r
n

n
e
w

E
r
r
o
r
(
'
V
a
l
i
d
a
t
i
o
n

f
a
i
l
e
d
!
'
)
;

}

}

}

R
E
A

C
T
 A

D
D

O
N

S

A
s
 n

p
m

 m
o
d
u
le

s
:

r
e
a
c
t
-
a
d
d
o
n
s
-
c
s
s
-
t
r
a
n
s
i
t
i
o
n
-
g
r
o
u
p

r
e
a
c
t
-
a
d
d
o
n
s
-
p
e
r
f

r
e
a
c
t
-
a
d
d
o
n
s
-
t
e
s
t
-
u
t
i
l
s

r
e
a
c
t
-
a
d
d
o
n
s
-
p
u
r
e
-
r
e
n
d
e
r
-
m
i
x
i
n

r
e
a
c
t
-
a
d
d
o
n
s
-
l
i
n
k
e
d
-
s
t
a
t
e
-
m
i
x
i
n

r
e
a
c
t
-
a
d
d
o
n
s
-
c
l
o
n
e
-
w
i
t
h
-
p
r
o
p
s

r
e
a
c
t
-
a
d
d
o
n
s
-
c
r
e
a
t
e
-
f
r
a
g
m
e
n
t

r
e
a
c
t
-
a
d
d
o
n
s
-
c
s
s
-
t
r
a
n
s
i
t
i
o
n
-
g
r
o
u
p

r
e
a
c
t
-
a
d
d
o
n
s
-
l
i
n
k
e
d
-
s
t
a
t
e
-
m
i
x
i
n

r
e
a
c
t
-
a
d
d
o
n
s
-
p
u
r
e
-
r
e
n
d
e
r
-
m
i
x
i
n

r
e
a
c
t
-
a
d
d
o
n
s
-
s
h
a
l
l
o
w
-
c
o
m
p
a
r
e

r
e
a
c
t
-
a
d
d
o
n
s
-
t
r
a
n
s
i
t
i
o
n
-
g
r
o
u
p

r
e
a
c
t
-
a
d
d
o
n
s
-
u
p
d
a
t
e

Praise for React Quickly

“React Quickly is a one-stop shop for anyone who wants a guided introduction to

React and the ecosystem of tools, concepts, and libraries around it. Follow Azat’s

walkthroughs, work on the projects given, and you’ll soon understand React, Redux,

GraphQL, Webpack, and Jest, as well as how to put them to work.”

—Peter Cooper, editor of JavaScript Weekly

“React Quickly teaches the reader the most valuable and buzz-worthy concepts in

building modern web applications with React including GraphQL, Webpack, and

server-side rendering. After reading React Quickly, you should feel confident in

your ability to create a production-grade web application with React.”

—Stan Bershadskiy, author of React Native Cookbook

“Azat is one of the most authoritative voices in the programming space. This book

goes far beyond the basics by deep diving into React’s foundation and architecture.

It’s a must read for any developer!”

—Erik Hanchett, author of Ember.js Cookbook

“This book is simple to follow. It uses very basic language that makes you

understand each concept step by step.”

—Israel Morales, front-end developer and
web designer at SavvyCard

“Simple language with simple logical examples to get you up and running quickly is

why this book truly justifies its title, React Quickly. This book covers all the major

topics that any developer new to React needs in order to start writing apps using

React. And the author’s sense of humor will keep you engaged until the end. I am

thankful Azat took time to share his React journey with us.”

—Suhas Deshpande, software engineer at Capital One

“React Quickly is a great resource for coming up to speed with React. Very thorough

and relevant. I’ll be using it as a reference for my next app.”

—Nathan Bailey, full stack developer at SpringboardAuto.com

“Azat is great at what he does—teaching people how to code. React Quickly
contains fundamental knowledge as well as practical examples to get you started

using React quickly.”

—Shu Liu, IT consultant

“Since being open sourced by Facebook in 2013, React.js has rapidly become a widely

adopted JS library and one of the most starred projects on GitHub. In his new book,

React Quickly, Azat Mardan has, in his typical lucid style, laid out everything you

need to learn about the React ecosystem in order to build performant SPA

applications quickly. Just the chapters on React state and Universal JavaScript are

worth the price of the book.”

—Prakash Sarma, New Star Online

“React Quickly will ease your adoption of React by giving you a clear foundation,

and it will have you building applications that thoroughly embrace the benefits of

using React.

—Allan Von Schenkel, VP of Technology & Strategy at FoundHuman

“React Quickly covers all the important aspects of React in an easy-to-consume

fashion. This book is like all of Azat’s work: clear and concise, and it covers what’s

needed to become productive quickly. If you are interested in adding React to your

skill set, I say start here.”

—Bruno Watt, consulting architect at hypermedia.tech

“React Quickly is an incredibly comprehensive book on full-stack web development

with React.js, covering not just React itself but the ecosystem surrounding it. I’ve

always been mystified by server-side React and found that Azat’s book really helped

me finally understand it. If you’re new to React and would like to truly master it, I

would look no further than this book.”

—Richard Kho, software engineer at Capital One

 React Quickly
PAINLESS WEB APPS WITH REACT, JSX, REDUX, AND GRAPHQL

 AZAT MARDAN
FOREWORD BY JOHN SONMEZ

M A N N I N G

SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Dan Maharry
20 Baldwin Road Technical development editor: Anto Aravinth
PO Box 761 Review editor: Ivan Martinović
Shelter Island, NY 11964 Project editor: Tiffany Taylor

Copyeditor: Tiffany Taylor
Proofreader: Katie Tennant

Technical proofreader: German Frigerio
Typesetter: Gordan Salinovic

Cover designer: Leslie Haimes

ISBN 9781617293344
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17

 To my grandfather, Khalit Khamitov. Thank you for being such a kind and just

person. You will always stay in my memory, along with the crafts you taught me,

the trips we took to the dacha, and the chess games we played.

vii

brief contents
PART 1 REACT FOUNDATION ...1

1 ■ Meeting React 3

2 ■ Baby steps with React 27

3 ■ Introduction to JSX 41

4 ■ Making React interactive with states 69

5 ■ React component lifecycle events 90

6 ■ Handling events in React 111

7 ■ Working with forms in React 140

8 ■ Scaling React components 164

9 ■ Project: Menu component 186

10 ■ Project: Tooltip component 201

11 ■ Project: Timer component 210

PART 2 REACT ARCHITECTURE ..225

12 ■ The Webpack build tool 227

13 ■ React routing 246

14 ■ Working with data using Redux 274

BRIEF CONTENTSviii

15 ■ Working with data using GraphQL 305

16 ■ Unit testing React with Jest 325

17 ■ React on Node and Universal JavaScript 345

18 ■ Project: Building a bookstore with React Router 384

19 ■ Project: Checking passwords with Jest 406

20 ■ Project: Implementing autocomplete with Jest, Express,
and MongoDB 425

ix

contents
foreword xvii
preface xix
acknowledgments xxi
about this book xxiii
about the author xxvii
about the cover xxx

Part 1 React foundation ..1

1 Meeting React 3

1.1 What is React? 5

1.2 The problem that React solves 5

1.3 Benefits of using React 6

Simplicity 7 ■ Speed and testability 13 ■ Ecosystem and community 14

1.4 Disadvantages of React 15

1.5 How React can fit into your web applications 15

React libraries and rendering targets 16 ■ Single-page applications
and React 18 ■ The React stack 19

1.6 Your first React code: Hello World 21

1.7 Quiz 25

CONTENTSx

1.8 Summary 25

1.9 Quiz answers 26

2 Baby steps with React 27

2.1 Nesting elements 27

2.2 Creating component classes 31

2.3 Working with properties 34

2.4 Quiz 39

2.5 Summary 40

2.6 Quiz answers 40

3 Introduction to JSX 41

3.1 What is JSX, and what are its benefits? 42

3.2 Understanding JSX 45
Creating elements with JSX 45 ■ Working with JSX in
components 46 ■ Outputting variables in JSX 48 ■ Working
with properties in JSX 49 ■ Creating React component
methods 53 ■ if/else in JSX 55 ■ Comments in JSX 58

3.3 Setting up a JSX transpiler with Babel 59

3.4 React and JSX gotchas 63
Special characters 64 ■ data- attributes 65 ■ style attribute 65
class and for 66 ■ Boolean attribute values 66

3.5 Quiz 67

3.6 Summary 68

3.7 Quiz answers 68

4 Making React interactive with states 69

4.1 What are React component states? 71

4.2 Working with states 72
Accessing states 72 ■ Setting the initial state 74 ■ Updating
states 76

4.3 States and properties 80

4.4 Stateless components 81

4.5 Stateful vs. stateless components 83

4.6 Quiz 88

4.7 Summary 89

4.8 Quiz answers 89

CONTENTS xi

5 React component lifecycle events 90

5.1 A bird’s-eye view of React component lifecycle events 91

5.2 Categories of events 91

5.3 Implementing an event 95

5.4 Executing all events together 97

5.5 Mounting events 99

componentWillMount() 99 ■ componentDidMount() 100

5.6 Updating events 103

componentWillReceiveProps(newProps) 104
shouldComponentUpdate() 104 ■ componentWillUpdate() 105
componentDidUpdate() 105

5.7 Unmounting event 105

componentWillUnmount() 105

5.8 A simple example 106

5.9 Quiz 110

5.10 Summary 110

5.11 Quiz answers 110

6 Handling events in React 111

6.1 Working with DOM events in React 112

Capture and bubbling phases 114 ■ React events under the hood 117
Working with the React SyntheticEvent event object 120 ■ Using events
and state 124 ■ Passing event handlers as properties 126
Exchanging data between components 129

6.2 Responding to DOM events not supported by React 131

6.3 Integrating React with other libraries: jQuery UI events 134

Integrating buttons 135 ■ Integrating labels 136

6.4 Quiz 138

6.5 Summary 138

6.6 Quiz answers 139

7 Working with forms in React 140

7.1 The recommended way to work with forms in React 141

Defining a form and its events in React 143 ■ Defining form
elements 145 ■ Capturing form changes 151 ■ Account field
example 153

CONTENTSxii

7.2 Alternative ways to work with forms 155

Uncontrolled elements with change capturing 156 ■ Uncontrolled
elements without capturing changes 158 ■ Using references to
access values 159 ■ Default values 161

7.3 Quiz 162

7.4 Summary 163

7.5 Quiz answers 163

8 Scaling React components 164

8.1 Default properties in components 165

8.2 React property types and validation 167

8.3 Rendering children 174

8.4 Creating React higher-order components for code reuse 177

Using displayName: distinguishing child components from their
parent 179 ■ Using the spread operator: passing all of your
attributes 181 ■ Using higher-order components 181

8.5 Best practices: presentational vs. container components 184

8.6 Quiz 185

8.7 Summary 185

8.8 Quiz answers 185

9 Project: Menu component 186

9.1 Project structure and scaffolding 187

9.2 Building the menu without JSX 188

The Menu component 189 ■ The Link component 192
Getting it running 194

9.3 Building the menu in JSX 195

Refactoring the Menu component 197 ■ Refactoring the Link
component 198 ■ Running the JSX project 199

9.4 Homework 200

9.5 Summary 200

10 Project: Tooltip component 201

10.1 Project structure and scaffolding 202

10.2 The Tooltip component 204

The toggle() function 205 ■ The render() function 206

10.3 Getting it running 208

CONTENTS xiii

10.4 Homework 209

10.5 Summary 209

11 Project: Timer component 210

11.1 Project structure and scaffolding 211

11.2 App architecture 213

11.3 The TimerWrapper component 215

11.4 The Timer component 219

11.5 The Button component 220

11.6 Getting it running 222

11.7 Homework 223

11.8 Summary 223

Part 2 React architecture ...225

12 The Webpack build tool 227

12.1 What does Webpack do? 228

12.2 Adding Webpack to a project 229

Installing Webpack and its dependencies 231 ■ Configuring
Webpack 233

12.3 Modularizing your code 234

12.4 Running Webpack and testing the build 236

12.5 Hot module replacement 239

Configuring HMR 240 ■ Hot module replacement in action 243

12.6 Quiz 245

12.7 Summary 245

12.8 Quiz answers 245

13 React routing 246

13.1 Implementing a router from scratch 247

Setting up the project 248 ■ Creating the route mapping in
app.jsx 250 ■ Creating the Router component in router.jsx 250

13.2 React Router 252

React Router’s JSX style 256 ■ Hash history 257 ■ Browser
history 258 ■ React Router development setup with Webpack 259
Creating a layout component 262

CONTENTSxiv

13.3 React Router features 265

Accessing router with the withRouter higher-order component 265
Navigating programmatically 266 ■ URL parameters and other
route data 267 ■ Passing properties in React Router 268

13.4 Routing with Backbone 269

13.5 Quiz 272

13.6 Summary 273

13.7 Quiz answers 273

14 Working with data using Redux 274

14.1 React support for unidirectional data flow 275

14.2 Understanding the Flux data architecture 278

14.3 Using the Redux data library 279

Redux Netflix clone 281 ■ Dependencies and configs 283
Enabling Redux 286 ■ Routes 287 ■ Combining reducers 289
Reducer for movies 290 ■ Actions 292 ■ Action creators 293
Connecting components to the store 294 ■ Dispatching an
action 297 ■ Passing action creators into component properties 298
Running the Netflix clone 303 ■ Redux wrap-up 303

14.4 Quiz 304

14.5 Summary 304

14.6 Quiz answers 304

15 Working with data using GraphQL 305

15.1 GraphQL 306

15.2 Adding a server to the Netflix clone 308

Installing GraphQL on a server 310 ■ Data structure 313
GraphQL schema 314 ■ Querying the API and saving the
response into the store 316 ■ Showing the list of movies 321
GraphQL wrap-up 323

15.3 Quiz 323

15.4 Summary 324

15.5 Quiz answers 324

16 Unit testing React with Jest 325

16.1 Types of testing 326

16.2 Why Jest (vs. Mocha or others)? 327

CONTENTS xv

16.3 Unit testing with Jest 329

Writing unit tests in Jest 330 ■ Jest assertions 332

16.4 UI testing React with Jest and TestUtils 333

Finding elements with TestUtils 336 ■ UI-testing the password
widget 337 ■ Shallow rendering 342

16.5 TestUtils wrap-up 343

16.6 Quiz 344

16.7 Summary 344

16.8 Quiz answers 344

17 React on Node and Universal JavaScript 345

17.1 Why React on the server? And what is Universal
JavaScript? 346

Proper page indexing 346 ■ Better performance with faster loading
times 348 ■ Better code maintainability 348 ■ Universal
JavaScript with React and Node 348

17.2 React on Node 351

17.3 React and Express: rendering on the server side from
components 354

Rendering simple text on the server side 354 ■ Rendering an
HTML page 355

17.4 Universal JavaScript with Express and React 363

Project structure and configuration 365 ■ Setting up the
server 366 ■ Server-side layout templates with Handlebars 371
Composing React components on the server 373 ■ Client-side React
code 375 ■ Setting up Webpack 376 ■ Running the app 378

17.5 Quiz 382

17.6 Summary 383

17.7 Quiz answers 383

18 Project: Building a bookstore with React Router 384

18.1 Project structure and Webpack configuration 387

18.2 The host HTML file 390

18.3 Creating components 391

Main file: app.jsx 391 ■ The Cart component 398
The Checkout component 400 ■ The Modal component 401
The Product component 403

CONTENTSxvi

18.4 Launching the project 404

18.5 Homework 404

18.6 Summary 405

19 Project: Checking passwords with Jest 406

19.1 Project structure and Webpack configuration 408

19.2 The host HTML file 411

19.3 Implementing a strong password module 412

The tests 412 ■ The code 413

19.4 Implementing the Password component 415

The tests 415 ■ The code 416

19.5 Putting it into action 422

19.6 Homework 424

19.7 Summary 424

20 Project: Implementing autocomplete with Jest, Express,
and MongoDB 425

20.1 Project structure and Webpack configuration 428

20.2 Implementing the web server 432

Defining the RESTful APIs 433 ■ Rendering React on the
server 434

20.3 Adding the browser script 435

20.4 Creating the server template 435

20.5 Implementing the Autocomplete component 436

The tests for Autocomplete 436 ■ The code for the Autocomplete
component 438

20.6 Putting it all together 441

20.7 Homework 444

20.8 Summary 445

appendix A Installing applications used in this book 447

appendix B React cheatsheet 455

appendix C Express.js cheatsheet 463

appendix D MongoDB and Mongoose cheatsheet 468

appendix E ES6 for success 472

index 485

xvii

foreword
I keep hoping that JavaScript will die. Seriously. Die brutally and painfully.

 It’s not that I completely dislike JavaScript—it has improved quite a bit over the

years. It’s that I have a severe distaste for complexity—so much so that I named my

blog and my business Simple Programmer. My tagline has always been, “Making the com-

plex simple.”

 Making the complex simple isn’t easy. It takes a special set of skills. You have to be

able to understand the complex, and understand it so well that you can distill it down

to the core—because everything is simple at the core. This is exactly what Azat has

done with this book, React Quickly.

 Now, I’ll admit Azat had a little help. You see, one of the reasons I personally like

ReactJS so much is that it’s simple. It was designed to be simple. It was designed to

deal with the increasing complexity of JavaScript frameworks and reduce that com-

plexity by going back to the basics: plain old JavaScript. (At least, for the most part.

ReactJS does have a JSX language that’s compiled into JavaScript, but I’ll let Azat tell

you about that.)

 The point is, although I like Angular, Backbone, and some other JavaScript frame-

works because they’ve helped make it much easier for web developers to create asyn-

chronous web applications and single-page applications, they’ve also added a great deal

of complexity. Using templates and understanding the syntax and subtleties of these

frameworks increased productivity, but they moved the complexity from the backend to

the frontend. ReactJS starts over, gets rid of templates, and gives you a way to apply com-

ponent-based architecture to your UI using JavaScript. I like this. It’s simple. But even

FOREWORDxviii

the simplest thing can be difficult to explain—or worse yet, made complex by a teacher

who lacks this skill.

 This is where Azat comes in. He knows how to teach. He knows how to simplify. He

begins this book by explaining React through contrasting it with something you prob-

ably already know: Angular. Even if you don’t know Angular, his explanation of

ReactJS will quickly help you understand the basics and its purpose. Then Azat quickly

demonstrates how to create a basic ReactJS application, so you can see and do it for

yourself. After that, he takes you through the 20% you need to know in order to

accomplish 80% of what you’ll do in React, using real-world examples that anyone can

grasp easily. Finally—and this is my favorite part—he includes examples and projects

galore. The absolute best way to learn is by doing, and Azat walks you through creat-

ing six—yes, six—nontrivial projects using ReactJS.

 In keeping with my theme of simplicity, I’ll leave off here by saying that React

Quickly is simply the best way I know of to learn ReactJS.

 JOHN SONMEZ

 AUTHOR OF Soft Skills (http://amzn.to/2hFHXAu)
 AND FOUNDER OF Simple Programmer (https://simpleprogrammer.com)

xix

preface
It was 2008, and banks were closing left and right. I was working at the Federal Deposit

Insurance Corporation (FDIC), whose primary task is to pay back depositors of closed,

failed, and insolvent banks. I admit that, in terms of job security, my job was on par

with working at Lehman Brothers or being a ticket salesman for the Titanic. But when

my department’s eventual budget cuts were still far in the future, I had the chance to

work on an app called Electronic Deposit Insurance Estimator (EDIE). The app

became hugely popular for a simple reason: people were anxious to find out how

much of their savings was insured by the United States federal government, and EDIE

estimated that amount.

 But there was a catch: people don’t like to tell the government about their private

accounts. To protect their privacy, the app was made entirely in front-end JavaScript,

HTML, and CSS, without any back-end technologies. This way, the FDIC wasn’t collect-

ing any financial information.

 The app was a hot mess of spaghetti code left by dozens of iterations of consul-

tants. Developers came and went, leaving no documentation and nothing resembling

any logical, simple algorithms. It was like trying to use the New York City subway with-

out a map. There were myriads of functions to call other functions, strange data struc-

tures, and more functions. In modern terminology, the app was pure user interface

(UI), because it had no backend.

 I wish I’d had React.js back then. React brings joy. It’s a new way of thinking—a

new way of developing. The simplicity of having your core functionality in one place,

PREFACExx

as opposed to splitting it into HTML and JS, is liberating. It reignited my passion for

front-end development.

 React is a fresh way of looking at developing UI components. It’s a new generation

of presentation layer libraries. Together with a model and routing library, React can

replace Angular, Backbone, or Ember in the web and mobile tech stack. This is the

reason I wrote this book. I never liked Angular: it’s too complex and opinionated. The

template engine is very domain specific, to the point that it’s not JavaScript anymore;

it’s another language. I have used Backbone.js and like it for its simplicity and DIY

approach. Backbone.js is mature and more like a foundation for your own framework

than a full-blown, opinionated framework in itself. The problem with Backbone is the

increased complexity of interactions between models and views: multiple views update

various models, which update other views, which trigger events on models.

 My personal experience from doing a Kickstarter campaign for my React.js online

course (http://mng.bz/XgkO) and from going to various conferences and events

has shown me that developers are hungry for a better way to develop UIs. Most busi-

ness value now lies in UIs. The backend is a commodity. In the Bay Area, where I live

and work, most job openings in software engineering are for front-end or (a trendy

new title) generalist/fullstack developers. Only a few big companies like Google,

Amazon, and Capital One still have relatively strong demand for data scientists and

back-end engineers.

 The best way to ensure job security or get a great job in the first place is to become

a generalist. The fastest way to do so is to use an isomorphic, scalable, developer-

friendly library like React on the front end, paired with Node.js on the backend in

case you ever need to mess with server-side code.

 For mobile developers, HTML5 was a dirty word two or three years ago. Facebook

dropped its HTML5 app in favor of a more performant native implementation. But

this unfavorable view is quickly changing. With React Native, you can render for

mobile apps: you can keep your UI components but tailor them to different environ-

ments, another point in favor of learning React.

 Programming can be creative. Don’t get bogged down by mundane tasks, complex-

ity, and fake separation of concerns. Cut out all the unnecessary junk, and unleash your

creative power with the simplistic beauty of modular, component-based UIs powered by React.

Throw in some Node for isomorphic/universal JavaScript, and you’ll achieve Zen.

 Happy reading, and let me know how you like the book by leaving a review on

Amazon.com (http://amzn.to/2gPxv9Q).

xxi

acknowledgments
I’d like to acknowledge the internet, the universe, and the human ingenuity that

brought us to the point that telepathy is possible. Without opening my mouth, I can

share my thoughts with millions of people around the globe via social media such as

Twitter, Facebook, and Instagram. Hurray!

 I feel humongous gratitude to my teachers, both intentional at schools and univer-

sities, and accidental and occasional, whose wisdom I grasped from books and from

learning by osmosis.

 As Stephen King once wrote, “To write is human, to edit is divine.” Thus, my endless

gratitude to the editors of this book and even more so to the readers who will have to

deal with the inevitable typos and bugs they’ll encounter in this volume. This is my 14th

book, and I know there will be typos, no mater what [sic].

 I thank the people at Manning who made this book possible: publisher Marjan

Bace and everyone on the editorial and production teams, including Janet Vail, Kevin

Sullivan, Tiffany Taylor, Katie Tennant, Gordan Salinovic, Dan Maharry, and many

others who worked behind the scenes.

 I can’t thank enough the amazing group of technical peer reviewers led by Ivan

Martinovic: James Anaipakos, Dane Balia, Art Bergquist, Joel Goldfinger, Peter Hamp-

ton, Luis Matthew Heck, Ruben J. Leon, Gerald Mack, Kamal Raj, and Lucas Tetta-

manti. Their contributions included catching technical mistakes, errors in

terminology, and typos, and making topic suggestions. Each pass through the review

process and each piece of feedback implemented through the forum topics shaped

and molded the manuscript.

ACKNOWLEDGMENTSxxii

 On the technical side, special thanks go to Anto Aravinth, who served as the book’s

technical editor; and German Frigerio, who served as the book’s technical proof-

reader. They are the best technical editors I could have hoped for.

 Many thanks go to John Sonmez of Pluralsight, Manning, and SimpleProgrammer.com

fame, for writing the foreword to this book. Thank you, Peter Cooper, Erik Hanchett, and

Stan Bershadskiy for your reviews and for giving the book extra credibility. Readers who

haven’t heard of John, Peter, Erik, or Stan should subscribe and follow their work around

software engineering.

 Finally, a thank you to all the MEAP readers for your feedback. Revising the book

based on your reviews delayed publication by a year, but the result is the best book cur-

rently available about React.

xxiii

about this book
This book is intended to cure the troubles of front-end developers, make their lives

more meaningful and happier, and help them earn more money by introducing them

to React.js—and doing so in a fast manner (hence the word Quickly in the title). It’s the

work of one and a half years and about a dozen people. At the very least, the book is meant

to open your mind to some unusual concepts like JSX, unidirectional data flow, and

declarative programming.

Roadmap

The book is split into two parts: “Core React” (chapters 1–11) and “React and friends”

(chapters 12–20). Each chapter includes descriptive text supplemented with code

examples and diagrams where they’re applicable. Each chapter also has an optional

introductory video that will help you decide whether you need to read the chapter or

can skip it. Chapters are written in a standalone manner, meaning you should have no

trouble if you don’t read the book in order—although I do recommend reading it

sequentially. At the end of each chapter is a quiz, to reinforce your retention of the

material, and a summary.

 Each part ends with a series of larger projects that will give you more experience with

React and solidify your new understanding by building on the concepts and knowledge

introduced in the previous chapters. The projects are supplemented by optional

screencast videos to reinforce your learning and show you dynamic things like creating

files and installing dependencies (there are a lot of moving parts in web development!).

These projects are an integral part of the book’s flow—avoid skipping them.

ABOUT THIS BOOKxxiv

I encourage you to type each line of code yourself and abstain from copying and

pasting. Studies have shown that typing and writing increase learning effectiveness.

 The book ends with five appendixes that provide supplemental material. Check

them out, along with the table of contents, before you begin reading.

 The websites for this book are www.manning.com/books/react-quickly and http://

reactquickly.co. If you need up-to-date information, most likely you’ll find it there.

 The source code is available on the Manning website (www.manning.com/books/

react-quickly) and on GitHub (https://github.com/azat-co/react-quickly). See the

“Source code” section for more details. I show full listings of the code in the book—

this is more convenient than jumping to GitHub or a code editor to look at the files.

Who this book is for (read this!)

This book is for web and mobile developers and software engineers with two to three

years of experience, who want to start learning and using React.js for web or mobile

development. Basically, it’s for people who know the shortcut for the Developer Tools

by heart (Cmd-Opt-J or Cmd-Opt-I on Macs). The book targets readers who know and

are on a first-name basis with these concepts:

■ Single-page applications (SPAs)
■ RESTful services and API architecture
■ JavaScript, especially closures, scopes, and string and array methods
■ HTML, HTML5, and their elements and attributes
■ CSS and its styles and JavaScript selectors

Having experience with jQuery, Angular, Ember.js, Backbone.js, or other MVC-like

frameworks is a plus, because you’ll be able to contrast them with the React way. But

it’s not necessary and to some degree may be detrimental, because you’ll need to

unlearn certain patterns. React is not exactly MVC.

 You’ll be using command-line tools, so if you’re afraid of them, this is the best time

to fight your phobia of the command line/Terminal/command prompt. Typically, CLIs

are more powerful and versatile than their visual (GUI) versions (for example, the Git

command line versus the GitHub desktop—the latter confuses the heck out of me).

 Having some familiarity with Node.js will allow you to learn React much more quickly

than someone who’s never heard of Node.js, npm, Browserify, CommonJS, Gulp, or

Express.js. I’ve authored several books on Node.js for those who want to brush up on it,

the most popular being Practical Node.js (http://practicalnodebook.com). Or, you can

go online for a free NodeSchool adventure (http://nodeschool.io) (free does not

always mean worse).

What this book is not (read this too!)

This book is not a comprehensive guide to web or mobile development. I assume that

you already know about those. If you want help with basic programming concepts or

JavaScript fundamentals, there are plenty of good books on those topics. You Don’t

ABOUT THIS BOOK xxv

Know JS by Kyle Simpson (free to read at https://github.com/getify/You-Dont-Know-

JS), Secrets of the JavaScript Ninja, Second Edition (www.manning.com/books/secrets-of-

the-javascript-ninja-second-edition), and Eloquent JavaScript by Marijn Haverbeke (free

to read at http://eloquentjavascript.net) come to mind. So, there’s no need for me to

duplicate existing content with this book.

How to use this book

First of all, you should read this book. That is not a joke. Most people buy books but never

read them. It’s even easier to do so with digital copies, because they hide on drives and

in the cloud. Read the book, and work through the projects, chapter by chapter.

 Each chapter covers either a topic or a series of topics that build on each other. For

this reason, I recommend that you read this book from beginning to end and then go back to

individual chapters for reference. But as I said earlier, you can also read individual

chapters out of order, because the projects in the chapters stand alone.

 There are many links to external resources. Most of them are optional and provide

additional details about topics. Therefore, I suggest that you read the book at your

computer, so you can open links as I refer to them.

 Some text appears in a monospace font, like this: getAccounts(). That means it’s

code, inline or in blocks. Sometimes you’ll see code with weird indentation:

 document.getElementById('end-of-time').play()
 }

This means I’m annotating a large chunk of code and broke it into pieces. This piece

belongs to a bigger listing that started from position 0; this small chunk won’t run by

itself.

 Other times, code blocks aren’t indented. In such cases, it’s generally safe to

assume that the snippet is the whole thing:

ReactDOM.render(
<Content />,
 document.getElementById(‘content’)
)

If you see a dollar sign ($), it’s a Terminal/command prompt command. For example:

$ npm install -g babel@5.8.34

The most important thing to know and remember while using this book is that you

must have fun. If it’s not fun, it’s not JavaScript!

Source code

All of the book’s code is available at www.manning.com/books/react-quickly and

https://github.com/azat-co/react-quickly. Follow the folder-naming convention

chNN, where NN is the chapter number with a leading 0 if needed (for example, ch02

ABOUT THIS BOOKxxvi

for chapter 2’s code).The source code in the GitHub repository will evolve by includ-

ing patches, bug fixes, and maybe even new versions and styles (ES2020?).

Errata

I’m sure there are typos in this book. Yes, I had editors—a bunch of them, all profes-

sionals provided by Manning. But thanks for finding that typo. No need to leave nasty

Amazon reviews or send me hate mail about it, or about grammar.

 Please don’t email me bugs and typos. Instead, you can report them on the book’s

forum at https://forums.manning.com/forums/react-quickly or create a GitHub

issue at https://github.com/azat-co/react-quickly/issues. This way, other people can

benefit from your findings.

 Also, please don’t email me technical questions or errata. Post them on the book’s

forum, the book’s GitHub page (https://github.com/azat-co/react-quickly), or Stack

Overflow. Other people may help you more quickly (and better) than I can.

Book forum

Purchase of React Quickly includes free access to a private web forum run by Manning

Publications where you can make comments about the book, ask technical questions,

and receive help from the author and from other users. To access the forum, go to

https://forums.manning.com/forums/react-quickly. You can also learn more about

Manning’s forums and the rules of conduct at https://forums.manning.com/

forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful

dialogue between individual readers, and between readers and the author, can take

place. It is not a commitment to any specific amount of participation on the part of

the author, whose contribution to the forum remains voluntary (and unpaid). We sug-

gest you try asking the author some challenging questions lest his interest stray! The

forum and the archives of previous discussions will be accessible from the publisher’s

website as long as the book is in print.

xxvii

about the author
I’ve published more than 14 books and 17 online courses

(https://node.university), most of them on the cloud, React,

JavaScript, and Node.js. (One book is about how to write books,

and another is about what to do after you’ve written a few books.)

Before focusing on Node, I programmed in other languages

(Java, C, Perl, PHP, Ruby), pretty much ever since high school

(more than a dozen years ago) and definitely more than the 10,000 hours prescribed.1

 Right now, I’m a Technology Fellow at one of the top 10 U.S. banks, which is also a

Fortune 500 company: Capital One Financial Corporation, in beautiful San Francisco.

Before that, I worked for small startups, giant corporations, and even the U.S. federal

government, writing desktop, web, and mobile apps; teaching; and doing developer

evangelism and project management.

 I don’t want to take too much of your time telling you about myself; you can read

more on my blog (http://webapplog.com/about) and social media (www.linkedin

.com/in/azatm). Instead, I want to write about my experience that’s relevant to this

book.

 When I moved to the sunny state of California in 2011 to join a startup and go

through a business accelerator (if you’re curious, it was 500 Startups), I started to use

modern JavaScript. I learned Backbone.js to build a few apps for the startup, and I was

1 See https://en.wikipedia.org/wiki/Outliers_(book).

ABOUT THE AUTHORxxviii

impressed. The framework was a huge improvement in code organization over other

SPAs I’d built in prior years. It had routes and models. Yay!

 I had another chance to see the astounding power of Backbone and isomorphic

JavaScript during my work as software engineering team lead at DocuSign, the Google

of e-signatures (it has a 70% market share). We reengineered a seven-year-old mono-

lithic ASP.NET web app that took four weeks for each minor release into a snappy

Backbone-Node-CoffeeScript-Express app that had great user experience and took

only one or two weeks for its release. The design team did great work with usability.

Needless to say, there were boatloads of UI views with various degrees of interactivity.

 The end app was isomorphic before such a term even existed. We used Backbone

models on the server to prefetch the data from APIs and cache it. We used the same

Jade templates on the browser and the server.

 It was a fun project that made me even more convinced of the power of having one

language across the entire stack. Developers versed in C# and front-end JavaScript

(mostly jQuery) from the old app would spend a sprint (one release cycle, typically a

week or two) and fall in love with the clear structure of CoffeeScript, the organization

of Backbone, and the speed of Node (both the development and the running speed).

 My decade in web development exposed me to the good, the bad, and the ugly

(mostly ugly) of front-end development. This turned out to be a blessing in disguise,

because I came to appreciate React even more, once I switched to it.

 If you’d like to receive updates, news, and tips, then connect with me online by fol-

lowing, subscribing, friending, stalking, whatever:

■ Twitter—https://twitter.com/azat_co
■ Website—http://azat.co
■ LinkedIn—http://linkedin.com/in/azatm
■ Professional blog—http://webapplog.com
■ Publications—http://webapplog.com/books

For in-person workshops and courses, visit http://NodeProgram.com or https://

Node.University, or send me a message via https://webapplog.com/azat.

xxix

about the cover
An email from an early reader asked about the dervish on the cover. Yes, the character

could easily be a Persian or any one of many Turko-nomadic people inhabiting the

Middle East and central Asia. This is due to the fact that trade and travel were highly

developed and frequent among those regions for many centuries. But, according to

the illustrator who drew this picture, he was depicting a Siberian Bashkir. Most of the

modern-day Bashkirs live in the Republic of Bashkortostan (a.k.a. Bashkiria). Bashkirs

are close ethnic and geographical neighbors of the Volga Bulgars (improperly named

Tatars); Bashkirs and Tatars are the second-most-populous ethnic group in the Rus-

sian Federation. (The first is Russians, if you’re curious.)

 The figure comes from an eighteenth-century illustration, “Gravure Homme

Baschkir,” by Jacques Grasset de Saint-Sauveur. Fascination with faraway lands and

travel for pleasure were relatively new phenomena at the time, and collections of draw-

ings such as this one were popular, introducing both the tourist as well as the armchair

traveler to the inhabitants of other countries. The rich variety of drawings reminds us

vividly of how culturally apart the world’s regions, towns, villages, and neighborhoods

were just 200 years ago. Isolated from each other, people spoke different dialects and

languages. In the streets or in the countryside, it was easy to identify where they lived

and what their trade or station in life was, just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the

time, has faded away. It is now hard to tell apart the inhabitants of different conti-

nents, let alone different towns or regions. Perhaps we have traded cultural diversity

ABOUT THE COVERxxx

for a more varied personal life—certainly for a more varied and fast-paced technolog-

ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-

brates the inventiveness and initiative of the computer business with book covers

based on the rich diversity of regional life of two centuries ago, brought back to life by

pictures such as this one.

Part 1

React foundation

Hello! My name is Azat Mardan, and I’m going to take you on a journey

into the wonderful world of React. It will make your front-end development

more enjoyable and your code easier to write and maintain, and your users will

be delighted at the speed of your web apps. React is a game changer in web

development: the React community has pioneered many approaches, terms, and

design patterns, and other libraries have followed the path forged by React.

 I’ve taught this material more than 20 times in my live-online and in-person

workshops to hundreds of software engineers from very different backgrounds

and varied levels of seniority. Thus, this material has been battle tested on my

students: you’re getting the distilled, most effective version of my React founda-

tion course in a written format. These chapters are critical to get you on familiar

terms with React.

 Chapters 1–11 are the result of almost two years of work by several people, but

they read as a fast sequence of topics that build on each other. The best way to con-

sume these chapters is to start with chapter 1 and proceed in order. Each chapter

includes a video message from me; chapters 1–8 have a quiz at the end; and chap-

ters 9–11, which are projects, contain homework for self-guided development.

 All in all, this part of the book builds a solid foundation of React concepts,

patterns, and features. Can you go to a foreign country and understand the lan-

guage without studying? No—and that’s why you must learn the React “lan-

guage” before you attempt to build complex apps. Thus, it’s paramount that you

study these basic React concepts—that you learn the React language—which is

exactly what you’ll do in the next 11 chapters.

 Let’s get started with React—and learn to speak fluent React-ese.

3

Meeting React

When I began working on web development in early 2000, all I needed was some

HTML and a server-side language like Perl or PHP. Ah, the good old days of putting

in alert() boxes just to debug your front-end code. It’s a fact that as the internet has

evolved, the complexity of building websites has increased dramatically. Websites

have become web applications with complex user interfaces, business logic, and data

layers that require changes and updates over time—and often in real time.

 Many JavaScript template libraries have been written to try to solve the prob-

lems of dealing with complex user interfaces (UIs). But they still require developers

to adhere to the old separation of concerns—which splits style (CSS), data and

structure (HTML), and dynamic interactions (JavaScript)—and they don’t meet

modern-day needs. (Remember the term DHTML?)

This chapter covers

 Understanding what React is

 Solving problems with React

 Fitting React into your web applications

 Writing your first React app: Hello World

Watch this chapter’s introductory

video by scanning this QR code

with your phone or going to

http://reactquickly.co/videos/ch01.

4 CHAPTER 1 Meeting React

 In contrast, React offers a new approach that streamlines front-end development.

React is a powerful UI library that offers an alternative that many big firms such as

Facebook, Netflix, and Airbnb have adopted and see as the way forward. Instead of

defining a one-off template for your UIs, React allows you to create reusable UI com-

ponents in JavaScript that you can use again and again in your sites.

 Do you need a captcha control or date picker? Then use React to define a

<Captcha /> or <DatePicker /> component that you can add to your form: a simple

drop-in component with all the functionality and logic to communicate with the back

end. Do you need an autocomplete box that asynchronously queries a database once

the user has typed four or more letters? Define an <Autocomplete charNum="4"/>

component to make that asynchronous query. You can choose whether it has a text

box UI or has no UI and instead uses another custom form element—perhaps

<Autocomplete textbox="..." />.

 This approach isn’t new. Creating composable UIs has been around for a long time,

but React is the first to use pure JavaScript without templates to make this possible.

And this approach has proven easier to maintain, reuse, and extend.

 React is a great library for UIs, and it should be part of your front-end web toolkit;

but it isn’t a complete solution for all front-end web development. In this chapter,

we’ll look at the pros and cons of using React in your applications and how you might

fit it into your existing web-development stack.

 Part 1 of the book focuses on React’s primary concepts and features, and part 2

looks at working with libraries related to React to build more-complex front-end apps

(a.k.a. React stack or React and friends). Each part demonstrates both greenfield and

brownfield development1 with React and the most popular libraries, so you can get an

idea of how to approach working with it in real-world scenarios.

1 Brownfield is a project with legacy code and existing systems, while greenfield is a project without any legacy code
or systems; see https://en.wikipedia.org/wiki/Brownfield_(software_development).

Chapter videos and source code

We all learn differently. Some people prefer text and others video, and others learn

best via in-person instruction. Each chapter of this book includes a short video that

explains the chapter’s gist in less than 5 minutes. Watching them is totally optional.

They’ll give you a summary if you prefer a video format or need a refresher. After

watching each video, you can decide whether you need to read the chapter or can

skip to the next one.

The source code for the examples in this chapter is at www.manning.com/books/react-

quickly and at https://github.com/azat-co/react-quickly/tree/master/ch01 (in the

ch01 folder of the GitHub repository https://github.com/azat-co/react-quickly). You

can also find some demos at http://reactquickly.co/demos.

5The problem that React solves

1.1 What is React?

To introduce React.js properly, I first need to define it. So, what is React? It’s a UI com-

ponent library. The UI components are created with React using JavaScript, not a spe-

cial template language. This approach is called creating composable UIs, and it’s

fundamental to React’s philosophy.

 React UI components are highly self-contained, concern-specific blocks of function-

ality. For example, there could be components for date-picker, captcha, address, and

ZIP code elements. Such components have both a visual representation and dynamic

logic. Some components can even talk to the server on their own: for example, an auto-

complete component might fetch the autocompletion list from the server.2

Component-based architecture (CBA)—not to be confused with web components,

which are just one of the most recent implementations of CBA—existed before React.

Such architectures generally tend to be easier to reuse, maintain, and extend than

monolithic UIs. What React brings to the table is the use of pure JavaScript (without

templates) and a new way to look at composing components.

1.2 The problem that React solves

What problem does React solve? Looking at the last few years of web development,

note the problems in building and managing complex web UIs for front-end applica-

tions: React was born primarily to address those. Think of large web apps like Face-

book: one of the most painful tasks when developing such applications is managing

how the views change in response to data changes.

 Let’s refer to the official React website for more hints about the problem React

addresses: “We built React to solve one problem: building large applications with data

that changes over time.”3 Interesting! We can also look at the history of React for

more information. A discussion on the React Podcast4 mentions that the creator of

2 https://en.wikipedia.org/wiki/User_interface.
3 React official website, “Why React?” March 24, 2016, http://bit.ly/2mdCJKM.
4 React Podcast, “8. React, GraphQL, Immutable & Bow-Ties with Special Guest Lee Byron,” December 31, 2015,

http://mng.bz/W1X6.

User interfaces

In a broad sense, a user interface2 is everything that facilitates communication

between computers and humans. Think of a punch card or a mouse: they’re both UIs.

When it comes to software, engineers talk about graphical user interfaces (GUIs),

which were pioneered for early personal computers such as Macs and PCs. A GUI con-

sists of menus, text, icons, pictures, borders, and other elements. Web elements are

a narrow subset of the GUI: they reside in browsers, but there are also elements for

desktop applications in Windows, OS X, and other operating systems.

Every time I mention a UI in this book, I mean a web GUI.

6 CHAPTER 1 Meeting React

React—Jordan Walke—was solving a problem at Facebook: having multiple data

sources update an autocomplete field. The data came asynchronously from a back

end. It was becoming more and more complicated to determine where to insert new

rows in order to reuse DOM elements. Walke decided to generate the field representa-

tion (DOM elements) anew each time. This solution was elegant in its simplicity: UIs as

functions. Call them with data, and you get rendered views predictably.

 Later, it turned out that generating elements in memory is extremely fast and that

the actual bottleneck is rendering in the DOM. But the React team came up with an algo-

rithm that avoids unnecessary DOM pain. This made React very fast (and cheap in terms

of performance). React’s splendid performance and developer-friendly, component-

based architecture are a winning combination. These and other benefits of React are

described in the next section.

 React solved Facebook’s original problem, and many large firms agreed with this

approach. React adoption is solid, and its popularity is growing every month. React

emerged from Facebook5 and is now used not only by Facebook but also by Instagram,

PayPal, Uber, Sberbank, Asana,6 Khan Academy,7 HipChat,8 Flipboard,9 and Atom,10

to name just a few.11 Most of these applications originally used something else (typi-

cally, template engines with Angular or Backbone) but switched to React and are

extremely happy about it.

1.3 Benefits of using React

Every new library or framework claims to be better than its predecessors in some

respect. In the beginning, we had jQuery, and it was leaps and bounds better for writ-

ing cross-browser code in native JavaScript. If you remember, a single AJAX call taking

many lines of code had to account for Internet Explorer and WebKit-like browsers.

With jQuery, this takes only a single call: $.ajax(), for example. Back in the day,

jQuery was called a framework—but not anymore! Now a framework is something big-

ger and more powerful.

 Similarly with Backbone and then Angular, each new generation of JavaScript

frameworks has brought something new to the table. React isn’t unique in this. What

is new is that React challenges some of the core concepts used by most popular front-

end frameworks: for example, the idea that you need to have templates.

 The following list highlights some of the benefits of React versus other libraries

and frameworks:

5 “Introduction to React.js,” July 8, 2013, http://mng.bz/86XF.
6 Malcolm Handley and Phips Peter, “Why Asana Is Switching to TypeScript,” Asana Blog, November 14, 2014,

http://mng.bz/zXKo.
7 Joel Burget, “Backbone to React,” http://mng.bz/WGEQ.
8 Rich Manalang, “Rebuilding HipChat with React.js,” Atlassian Developers, February 10, 2015,

http://mng.bz/r0w6.
9 Michael Johnston, “60 FPS on the Mobile Web,” Flipboard, February 10, 2015, http://mng.bz/N5F0.
10 Nathan Sobo, “Moving Atom to React,” Atom, July 2, 2014, http://mng.bz/K94N.
11 See also the JavaScript usage stats at http://libscore.com/#React.

7Benefits of using React

 Simpler apps—React has a CBA with pure JavaScript; a declarative style; and pow-

erful, developer-friendly DOM abstractions (and not just DOM, but also iOS,

Android, and so on).

 Fast UIs—React provides outstanding performance thanks to its virtual DOM

and smart-reconciliation algorithm, which, as a side benefit, lets you perform

testing without spinning up (starting) a headless browser.

 Less code to write—React’s great community and vast ecosystem of components

provide developers with a variety of libraries and components. This is important

when you’re considering what framework to use for development.

Many features make React simpler to work with than most other front-end frame-

works. Let’s unpack these items one by one, starting with its simplicity.

1.3.1 Simplicity

The concept of simplicity in computer science is highly valued by developers and

users. It doesn’t equate to ease of use. Something simple can be hard to implement,

but in the end it will be more elegant and efficient. And often, an easy thing will end

up being complex. Simplicity is closely related to the KISS principle (keep it simple,

stupid).12 The gist is that simpler systems work better.

 React’s approach allows for simpler solutions via a dramatically better web-

development experience for software engineers. When I began working with React,

it was a considerable shift in a positive direction that reminded me of switching from

using plain, no-framework JavaScript to jQuery.

 In React, this simplicity is achieved with the following features:

 Declarative over imperative style—React embraces declarative style over imperative

by updating views automatically.

 Component-based architecture using pure JavaScript—React doesn’t use domain-

specific languages (DSLs) for its components, just pure JavaScript. And there’s

no separation when working on the same functionality.

 Powerful abstractions—React has a simplified way of interacting with the DOM,

allowing you to normalize event handling and other interfaces that work simi-

larly across browsers.

Let’s cover these one by one.

DECLARATIVE OVER IMPERATIVE STYLE

First, React embraces declarative style over imperative. Declarative style means devel-

opers write how it should be, not what to do, step-by-step (imperative). But why is

declarative style a better choice? The benefit is that declarative style reduces complex-

ity and makes your code easier to read and understand.

 Consider this short JavaScript example, which illustrates the difference between

declarative and imperative programming. Let’s say you need to create an array (arr2)

12 https://en.wikipedia.org/wiki/KISS_principle.

8 CHAPTER 1 Meeting React

whose elements are the result of doubling the elements of another array (arr). You

can use a for loop to iterate over an array and tell the system to multiply by 2 and cre-

ate a new element (arr2[i]=):

var arr = [1, 2, 3, 4, 5],
arr2 = []

for (var i=0; i<arr.length; i++) {
arr2[i] = arr[i]*2

}
console.log('a', arr2)

The result of this snippet, where each element is multiplied by 2, is printed on the

console as follows:

a [2, 4, 6, 8, 10]

This illustrates imperative programming, and it works—until it doesn’t work, due to

the complexity of the code. It becomes too difficult to understand what the end result

is supposed to be when you have too many imperative statements. Fortunately, you can

rewrite the same logic in declarative style with map():

var arr = [1, 2, 3, 4, 5],
arr2 = arr.map(function(v, i){ return v*2 })

console.log('b', arr2)

The output is b [2, 4, 6, 8, 10]; the variable arr2 is the same as in the previous

example. Which code snippet is easier to read and understand? In my humble opin-

ion, the declarative example.

 Look at the following imperative code for getting a nested value of an object. The

expression needs to return a value based on a string such as account or account.number

in such a manner that these statements print true:

var profile = {account: '47574416'}
var profileDeep = {account: { number: 47574416 }}
console.log(getNestedValueImperatively(profile, 'account') === '47574416')
console.log(getNestedValueImperatively(profileDeep, 'account.number')

➥ === 47574416)

This imperative style literally tells the system what to do to get the results you need:

var getNestedValueImperatively = function getNestedValueImperatively

➥ (object, propertyName) {
var currentObject = object
var propertyNamesList = propertyName.split('.')
var maxNestedLevel = propertyNamesList.length
var currentNestedLevel

for (currentNestedLevel = 0; currentNestedLevel < maxNestedLevel;

➥ currentNestedLevel++) {

9Benefits of using React

if (!currentObject || typeof currentObject === 'undefined')

 ➥ return undefined
currentObject = currentObject[propertyNamesList[currentNestedLevel]]

}

return currentObject
}

Contrast this with declarative style (focused on the result), which reduces the number

of local variables and thus simplifies the logic:

var getValue = function getValue(object, propertyName) {
return typeof object === 'undefined' ? undefined : object[propertyName]

}

var getNestedValueDeclaratively = function getNestedValueDeclaratively(object,

➥ propertyName) {
return propertyName.split('.').reduce(getValue, object)

}
console.log(getNestedValueDeclaratively({bar: 'baz'}, 'bar') === 'baz')
console.log(getNestedValueDeclaratively({bar: { baz: 1 }}, 'bar.baz')=== 1)

Most programmers have been trained to code imperatively, but usually the declarative

code is simpler. In this example, having fewer variables and statements makes the

declarative code easier to grasp at first glance.

 That was just some JavaScript code. What about React? It takes the same declara-

tive approach when you compose UIs. First, React developers describe UI elements in

a declarative style. Then, when there are changes to views generated by those UI ele-

ments, React takes care of the updates. Yay!

 The convenience of React’s declarative style fully shines when you need to make

changes to the view. Those are called changes of the internal state. When the state

changes, React updates the view accordingly.

NOTE I cover how states work in chapter 4.

Under the hood, React uses a virtual DOM to find differences (the delta) between

what’s already in the browser and the new view. This process is called DOM diffing or

reconciliation of state and view (bringing them back to similarity). This means developers

don’t need to worry about explicitly changing the view; all they need to do is update

the state, and the view will be updated automatically as needed.

 Conversely, with jQuery, you’d need to implement updates imperatively. By manip-

ulating the DOM, developers can programmatically modify the web page or parts of

the web page (a more likely scenario) without rerendering the entire page. DOM

manipulation is what you do when you invoke jQuery methods.

 Some frameworks, such as Angular, can perform automatic view updates. In Angu-

lar, it’s called two-way data binding, which basically means views and models have two-

way communication/syncing of data between them.

10 CHAPTER 1 Meeting React

 The jQuery and Angular approaches aren’t great, for two reasons. Think about

them as two extremes. At one extreme, the library (jQuery) isn’t doing anything, and

a developer (you!) needs to implement all the updates manually. At the other

extreme, the framework (Angular) is doing everything.

 The jQuery approach is prone to mistakes and takes more work to implement. Also,

this approach of directly manipulating the regular DOM works fine with simple UIs, but

it’s limiting when you’re dealing with a lot of elements in the DOM tree. This is the case

because it’s harder to see the results of imperative functions than declarative statements.

 The Angular approach is difficult to reason about because with its two-way bind-

ing, things can spiral out of control quickly. You insert more and more logic, and all of

a sudden, different views are updating models, and those models update other views.

 Yes, the Angular approach is somewhat more readable than imperative jQuery

(and requires less manual coding!), but there’s another issue. Angular relies on tem-

plates and a DSL that uses ng directives (for example, ng-if). I discuss its drawbacks in

the next section.

COMPONENT-BASED ARCHITECTURE USING PURE JAVASCRIPT

Component-based architecture13 existed before React came on the scene. Separation

of concerns, loose coupling, and code reuse are at the heart of this approach because

it provides many benefits; software engineers, including web developers, love CBA. A

building block of CBA in React is the component class. As with other CBAs, it has many

benefits, with code reuse being the main one (you can write less code!).

 What was lacking before React was a pure JavaScript implementation of this archi-

tecture. When you’re working with Angular, Backbone, Ember, or most of the other

MVC-like front-end frameworks, you have one file for JavaScript and another for the

template. (Angular uses the term directives for components.) There are a few issues

with having two languages (and two or more files) for a single component.

 The HTML and JavaScript separation worked well when you had to render HTML

on the server, and JavaScript was only used to make your text blink. Now, single page

applications (SPAs) handle complex user input and perform rendering on the

browser. This means HTML and JavaScript are closely coupled functionally. For devel-

opers, it makes more sense if they don’t need to separate between HTML and

JavaScript when working on a piece of a project (component).

 Consider this Angular code, which displays different links based on the value of

userSession:

<a ng-if="user.session" href="/logout">Logout
<a ng-if="!user.session" href="/login">Login

You can read it, but you may have doubts about what ng-if takes: a Boolean or a

string. And will it hide the element or not render it at all? In the Angular case, you

can’t be sure whether the element will be hidden on true or false, unless you’re famil-

iar with how this particular ng-if directive works.

13 http://mng.bz/a65r.

11Benefits of using React

 Compare the previous snippet with the following React code, which uses JavaScript

if/else to implement conditional rendering. It’s absolutely clear what the value of

user.session must be and what element (logout or login) is rendered if the value is

true. Why? Because it’s just JavaScript:

if (user.session) return React.createElement('a', {href: '/logout'}, 'Logout')
else return React.createElement('a', {href: '/login'}, 'Login')

Templates are useful when you need to iterate over an array of data and print a prop-

erty. We work with lists of data all the time! Let’s look at a for loop in Angular. As

mentioned earlier, in Angular, you need to use a DSL with directives. The directive for

a for loop is ng-repeat:

<div ng-repeat="account in accounts">
{{account.name}}

</div>

One of the problems with templates is that developers often have to learn yet another

language. In React, you use pure JavaScript, which means you don’t need to learn a

new language! Here’s an example of composing a UI for a list of account names with

pure JavaScript:

accounts.map(function(account) {
return React.createElement('div', null, account.name)

})14

Imagine a situation where you’re making some changes to the list of accounts. You

need to display the account number and other fields. How do you know what fields

the account has in addition to name?

 You need to open the corresponding JavaScript file that calls and uses this tem-

plate, and then you have to find accounts to see its properties. So the second problem

with templates is that the logic about the data and the description of how that data

should be rendered are separated.

 It’s much better to have the JavaScript and the markup in one place so you don’t

have to switch between file and languages. This is exactly how React works; and you’ll

see how React renders elements shortly in a Hello World example.

NOTE Separation of concerns generally is a good pattern. In a nutshell, it
means separation of different functions such as the data service, the view
layer, and so on. When you’re working with template markup and corre-
sponding JavaScript code, you’re working on one functionality. That’s why hav-
ing two files (.js and .html) isn’t a separation of concerns.

14 http://mng.bz/555J.

Regular JavaScript method that takes
an iterator expression as a parameter14

Iterator expression that
returns a <div> with
the account name

12 CHAPTER 1 Meeting React

Now, if you want to explicitly set the method by which to keep track of items (for

example, to ensure there are no duplicates) in the rendered list, you can use Angu-

lar’s track by feature:

<div ng-repeat="account in accounts track by account._id">
{{account.name}}

</div>

If you want to track by an index of the array, there’s $index:

<div ng-repeat="account in accounts track by $index">
{{account.name}}

</div>

But what concerns me and many other developers is, what is this magic $index? In

React, you use an argument from map() for the value of the key attribute:

accounts.map(function(account, index) {
return React.createElement('div', {key: index}, account.name)

})

It’s worth noting that map() isn’t exclusive to React. You can use it with other frame-

works because it’s part of the language. But the declarative nature of map() makes it

and React a perfect pair.

 I’m not picking on Angular—it’s a great framework. But the bottom line is that if a

framework uses a DSL, you need to learn its magic variables and methods. In React,

you can use pure JavaScript.

 If you use React, you can carry your knowledge to the next project even if it’s not

in React. On the other hand, if you use an X template engine (or a Y framework with

a built-in DSL template engine), you’re locked into that system and have to describe

yourself as an X/Y developer. Your knowledge isn’t transferable to projects that don’t

use X/Y. To summarize, the pure JavaScript component-based architecture is about

using discrete, well-encapsulated, reusable components that ensure better separation

of concerns based on functionality without the need for DSLs, templates, or directives.

 Working with many developer teams, I’ve observed another factor related to sim-

plicity. React has a better, shallower, more gradual learning curve compared to MVC

frameworks (well, React isn’t an MVC, so I’ll stop comparing them) and template

engines that have special syntax—for example, Angular directives or Jade/Pug. The

reason is that instead of using the power of JavaScript, most template engines build

abstractions with their own DSL, in a way reinventing things like an if condition or a

for loop.

Uses an array element value
(account) and its index
provided by Array.map()

Returns a React element <div/> with
an attribute key with the value index

and inner text set to account.name

13Benefits of using React

POWERFUL ABSTRACTIONS

React has a powerful abstraction of the document model. In other words, it hides the

underlying interfaces and provides normalized/synthesized methods and properties.

For example, when you create an onClick event in React, the event handler will receive

not a native browser-specific event object, but a synthetic event object that’s a wrapper

around native event objects. You can expect the same behavior from synthetic events

regardless of the browser in which you run the code. React also has a set of synthetic

events for touch events, which are great for building web apps for mobile devices.

 Another example of React’s DOM abstraction is that you can render React ele-

ments on the server. This can be handy for better search engine optimization (SEO)

and/or improving performance.

 There are more options when it comes to rendering React components than just

DOM or HTML strings for the server back end. We’ll cover them in section 1.5.1. And,

speaking of the DOM, one of the most sought-after benefits of React is its splendid per-

formance.

1.3.2 Speed and testability

In addition to the necessary DOM updates, your framework may perform unnecessary

updates, which makes the performance of complex UIs even worse. This becomes

especially noticeable and painful for users when you have a lot of dynamic UI ele-

ments on your web page.

 On the other hand, React’s virtual DOM exists only in the JavaScript memory. Every

time there’s a data change, React first compares the differences using its virtual DOM;

only when the library knows there has been a change in the rendering will it update

the actual DOM. Figure 1.1 shows a high-level overview of how React’s virtual DOM

works when there are data changes.

2. State changes

 (setState)

3. Smart diffing

 algorithm

 (reconciliation)

React virtual DOM

Virtual DOM:

“Dirty” components

affected by state changes

ReactElement

ReactNode

ReactComponent

Real DOM

DOMNode

1. Render

Real DOM

DOMNode

4. Rerender

 only affected

 elements

Figure 1.1 Once a component has been rendered, if its state changes, it’s compared to the

in-memory virtual DOM and rerendered if necessary.

14 CHAPTER 1 Meeting React

Ultimately, React updates only those parts that are absolutely necessary so that the

internal state (virtual DOM) and the view (real DOM) are the same. For example, if

there’s a <p> element and you augment the text via the state of the component, only

the text will be updated (that is, innerHTML), not the element itself. This results in

increased performance compared to rerendering entire sets of elements or, even

more so, entire pages (server-side rendering).

NOTE If you like to geek out on algorithms and Big Os, these two articles do a
great job of explaining how the React team managed to turn an O(n3) prob-
lem into an O(n) one: “Reconciliation,” on the React website
(http://mng.bz/PQ9X) and “React’s Diff Algorithm” by Christopher
Chedeau (http://mng.bz/68L4).

The added benefit of the virtual DOM is that you can do unit testing without headless

browsers like PhantomJS (http://phantomjs.org). There’s a Jasmine (http://

jasmine.github.io) layer called Jest (https://facebook.github.io/jest) that lets you test

React components right on the command line!

1.3.3 Ecosystem and community

Last, but not least, React is supported by the developers of a juggernaut web applica-

tion called Facebook, as well as by their peers at Instagram. As with Angular and some

other libraries, having a big company behind the technology provides a sound testing

ground (it’s deployed to millions of browsers), reassurance about the future, and an

increase in contribution velocity.

 The React community is incredible. Most of the time, developers don’t even have

to implement much of the code. Look at these community resources:

 List of React components: https://github.com/brillout/awesome-react-

components and http://devarchy.com/react-components

 Set of React components that implement the Google Material Design specifica-

tion (https://design.google.com): http://react-toolbox.com

 Material Design React components: www.material-ui.com

 Collection of React components for Office and Office 360 experiences (http://

dev.office.com/fabric#/components) using the Office Design Language:

https://github.com/OfficeDev/office-ui-fabric-react

 Opinionated catalog of open source JS (mostly React) packages:

https://js.coach

 Catalog of React components: https://react.rocks

 Khan Academy React components: https://khan.github.io/react-components

 Registry of React components: www.reactjsx.com

My personal anecdotal experience with open source taught me that the marketing of

open source projects is as important to its wide adoption and success as the code itself.

By that, I mean that if a project has a poor website, lacks documentation and examples,

15How React can fit into your web applications

and has an ugly logo, most developers won’t take it seriously—especially now, when

there are so many JavaScript libraries. Developers are picky, and they won’t use an ugly

duckling library.

 My teacher used to say, “Don’t judge a book by its cover.” This might sound contro-

versial; but, sadly, most people, including software engineers, are prone to biases such

as good branding. Luckily, React has a great engineering reputation backing it. And,

speaking of book covers, I hope you didn’t buy this book just for its cover!

1.4 Disadvantages of React

Of course, almost everything has its drawbacks. This is true with React, but the full list

of cons depends on whom you ask. Some of the differences, like declarative versus

imperative, are highly subjective. So, they can be both pros and cons. Here’s my list of

React disadvantages (as with any such list, it may be biased because it’s based on opin-

ions I’ve heard from other developers):

 React isn’t a full-blown, Swiss Army knife–type of framework. Developers need

to pair it with a library like Redux or React Router to achieve functionality com-

parable to Angular or Ember. This can also be an advantage if you need a mini-

malistic UI library to integrate with your existing stack.

 React isn’t as mature as other frameworks. React’s core API is still changing,

albeit very little after the 0.14 release; the best practices for React (as well as the

ecosystem of components, plug-ins, and add-ons) are still developing.

 React uses a somewhat new approach to web development, and JSX and Flux

(often used with React as the data library) can be intimidating to beginners.

There’s a lack of best practices, good books, courses, and resources available for

mastering React.

 React only has a one-way binding. Although one-way binding is better for com-

plex apps and removes a lot of complexity, some developers (especially Angular

developers) who got used to a two-way binding will find themselves writing a bit

more code. I’ll explain how React’s one-way binding works compared to Angu-

lar’s two-way binding in chapter 14, which covers working with data.

 React isn’t reactive (as in reactive programming and architecture, which are more

event-driven, resilient, and responsive) out of the box. Developers need to use

other tools such as Reactive Extensions (RxJS, https://github.com/Reactive-

Extensions/RxJS) to compose asynchronous data streams with Observables.

To continue with this introduction to React, let’s look at how it fits into a web application.

1.5 How React can fit into your web applications

In a way, the React library by itself, without React Router or a data library, is less com-

parable to frameworks (like Backbone, Ember, and Angular) and more comparable to

libraries for working with UIs, like template engines (Handlebars, Blaze) and DOM-

manipulation libraries (jQuery, Zepto). In fact, many teams have swapped traditional

16 CHAPTER 1 Meeting React

template engines like Underscore in Backbone or Blaze in Meteor for React, with

great success. For example, PayPal switched from Dust to Angular, as did many other

companies listed earlier in this chapter.

 You can use React for just part of your UI. For example, let’s say you have a load-

application form on a web page built with jQuery. You can gradually begin to convert

this front-end app to React by first converting the city and state fields to populate

automatically based on the ZIP code. The rest of the form can keep using jQuery.

Then, if you want to proceed, you can convert the rest of the form elements from

jQuery to React, until your entire page is built on React. Taking a similar approach,

many teams successfully integrated React with Backbone, Angular, or other existing

front-end frameworks.

 React is back-end agnostic for the purposes of front-end development. In other words,

you don’t have to rely on a Node.js back end or MERN (MongoDB, Express.js, React.js,

and Node.js) to use React. It’s fine to use React with any other back-end technology like

Java, Ruby, Go, or Python. React is a UI library, after all. You can integrate it with any back

end and any front-end data library (Backbone, Angular, Meteor, and so on).

 To summarize how React fits into a web app, it’s most often used in these scenarios:

 As a UI library in React-related stack SPAs, such as React+React and

Router+Redux

 As a UI library (V in MVC) in non-fully React-related stack SPAs, such as

React+Backbone

 As a drop-in UI component in any front-end stack, such as a React autocomplete

input component in a jQuery+server-side rendering stack

 As a server-side template library in a purely thick-server (traditional) web app or

in a hybrid or isomorphic/universal web app, such as an Express server that

uses express-react-views

 As a UI library in mobile apps, such as a React Native iOS app

 As a UI description library for different rendering targets (discussed in the next

section)

React works nicely with other front-end technologies, but it’s mostly used as part of

single-page architecture because SPA seems to be the most advantageous and popular

approach to building web apps. I cover how React fits into an SPA in section 1.5.2.

 In some extreme scenarios, you can even use React only on the server as a template

engine of sorts. For example, there’s an express-react-views library

(https://github.com/reactjs/express-react-views). It renders the view server-side from

React components. This server-side rendering is possible because React lets you use

different rendering targets.

1.5.1 React libraries and rendering targets

In versions 0.14 and higher, the React team split the library into two packages: React

Core (react package on npm) and ReactDOM (react-dom package on npm). By

17How React can fit into your web applications

doing so, the maintainers of React made it clear that React is on a path to become not

just a library for the web, but a universal (sometimes called isomorphic because it can

be used in different environments) library for describing UIs.

 For example, in version 0.13, React had a React.render() method to mount an

element to a web page’s DOM node. In versions 0.14 and higher, you need to include

react-dom and call ReactDOM.render() instead of React.render().

 Having multiple packages created by the community to support various rendering

targets made this approach of separating writing components and rendering logical.

Some of these modules are as follows:

 Renderer for the blessed (https://github.com/chjj/blessed) terminal inter-

face: http://github.com/Yomguithereal/react-blessed

 Renderer for the ART library (https://github.com/sebmarkbage/art):

https://github.com/reactjs/react-art

 Renderer for <canvas>: https://github.com/Flipboard/react-canvas

 Renderer for the 3D library using three.js (http://threejs.org): https://

github.com/Izzimach/react-three

 Renderer for virtual reality and interactive 360 experiences: https://facebook

.github.io/react-vr

In addition to the support of these libraries, the separation of React Core from React-

DOM makes it easier to share code between React and React Native libraries (used for

native mobile iOS and Android development). In essence, when using React for web

development, you’ll need to include at least React Core and ReactDOM.

 Moreover, there are additional React utility libraries in React and npm. (Before

React v15.5, some of them were part of React as React add-ons.15 These utility libraries

allow you to enhance functionality, work with immutable data (https://

github.com/kolodny/immutability-helper), and perform testing.

 Finally, React is almost always used with JSX—a tiny language that lets developers

write React UIs more eloquently. You can transpile JSX into regular JavaScript by using

Babel or a similar tool.

 As you can see, there’s a lot of modularity—the functionality of React-related

things is split into different packages. This gives you power and choice, which is a

good thing. No monolith or opinionated library dictates to you the only possible way

to implement things. More on this in section 1.5.3.

 If you’re a web developer reading this book, you probably use SPA architecture.

Either you already have a web app built using this and want to reengineer it with React

(brownfield), or you’re starting a new project from scratch (greenfield). Next, we’ll

zoom in on React’s place in SPAs as the most popular approach to building web apps.

15 See the version 15.5 change log with the list of add-ons and npm libraries: https://
facebook.github.io/react/blog/2017/04/07/react-v15.5.0.html. See also the page on add-ons:
https://facebook.github.io/react/docs/addons.html.

18 CHAPTER 1 Meeting React

1.5.2 Single-page applications and React

Another name for SPA architecture is thick client, because the browser, being a client,

holds more logic and performs functions such as rendering of the HTML, validation, UI

changes, and so on. Figure 1.2 is basic: it shows a bird’s-eye view of a typical SPA archi-

tecture with a user, a browser, and a server. The figure depicts a user making a request,

and input actions like clicking a button, drag-and-drop, mouse hovering, and so on:

1 The user types a URL in the browser to open a new page.

2 The browser sends a URL request to the server.

3 The server responds with static assets such as HTML, CSS, and JavaScript. In

most cases, the HTML is bare-bones—that is, it has only a skeleton of the web

page. Usually there’s a “Loading ...” message and/or rotating spinner GIF.

4 The static assets include the JavaScript code for the SPA. When loaded, this

code makes additional requests for data (AJAX/XHR requests).

5 The data comes back in JSON, XML, or any other format.

6 Once the SPA receives the data, it can render missing HTML (the User Interface

block in the figure). In other words, UI rendering happens on the browser by

means of the SPA hydrating templates with data.16

7 Once the browser rendering is finished, the SPA replaces the “Loading …” mes-

sage, and the user can work with the page.

8 The user sees a beautiful web page. The user may interact with the page (Inputs

in the figure), triggering new requests from the SPA to the server, and the cycle

of steps 2–6 continues. At this stage, browser routing may happen if the SPA

implements it, meaning navigation to a new URL will trigger not a new page

reload from the server, but rather an SPA rerender in the browser.

16 “What does it mean to hydrate an object?” Stack Overflow, http://mng.bz/uP25.

1. Inputs URL

7. Completed

 website UI

4. Loads JS

Browser

SPA code

Server

2. URL request

3. Response

 (assets)

5. Data requests/

 responses

8. Inputs/UI

 updates

Data

Static assetsStatic assets

App logic

Data service

6. Renders
User

interface

User

Figure 1.2 A typical SPA architecture

19How React can fit into your web applications

To summarize, in the SPA approach, most rendering for UIs happens on the browser.

Only data travels to and from the browser. Contrast that with a thick-server approach,

where all the rendering happens on the server. (Here I mean rendering as in generat-

ing HTML from templates or UI code, not as in rendering that HTML in the browser,

which is sometimes called painting or drawing the DOM.)

 Note that the MVC-like architecture is the most popular approach, but it isn’t the only

one. React doesn’t require you to use an MVC-like architecture; but, for the sake of

simplicity, let’s assume that your SPA is using an MVC-like architecture. You can see its

possible distinct parts in figure 1.3. A navigator or routing library acts as a controller of

sorts in the MVC paradigm; it dictates what data to fetch and what template to use. The

navigator/controller makes a request to get data and then hydrates/populates the

templates (views) with this data to render the UI in the form of the HTML. The UI sends

actions back to the SPA code: clicks, mouse hovers, keystrokes, and so on.

In an SPA architecture, data is interpreted and processed in the browser (browser ren-

dering) and is used by the SPA to render additional HTML or to change existing HTML.

This makes for nice interactive web applications that rival desktop apps. Angular.js,

Backbone.js, and Ember.js are examples of front-end frameworks for building SPAs.

NOTE Different frameworks implement navigators, data, and templates dif-
ferently, so figure 1.3 isn’t applicable to all frameworks. Rather, it illustrates
the most widespread separation of concerns in a typical SPA.

React’s place in the SPA diagram in figure 1.3 is in the Templates block. React is a view

layer, so you can use it to render HTML by providing it with data. Of course, React does

much more than a typical template engine. The difference between React and other

template engines like Underscore, Handlebars, and Mustache is in the way you develop

UIs, update them, and manage their states. We’ll talk about states in chapter 4 in more

detail. For now, think of states as data that can change and that’s related to the UI.

1.5.3 The React stack

React isn’t a full-blown, front-end JavaScript framework. React is minimalistic. It

doesn’t enforce a particular way of doing things like data modeling, styling, or routing

SPA code

User interface

(HTML)

Data requests

and server

responsesUser inputs

UI updates Renders

Navigator (controller)

Data (model)

Templates (view)

ActionsUser

Figure 1.3 Inside a single-page application

20 CHAPTER 1 Meeting React

(it’s non-opinionated). Because of that, developers need to pair React with a routing

and/or modeling library.

 For example, a project that already uses Backbone.js and the Underscore.js tem-

plate engine can switch to Underscore for React and keep existing data models and

routing from Backbone. (Underscore also has utilities, not just template methods. You

can use these Underscore utilities with React as a solution for a clear declarative style.)

Other times, developers opt to use the React stack, which consists of data and routing

libraries created to be used specifically with React:

 Data-model libraries and back ends—RefluxJS (https://github.com/reflux/refluxjs),

Redux (http://redux.js.org), Meteor (https://www.meteor.com), and Flux

(https://github.com/facebook/flux)

 Routing library—React Router (https://github.com/reactjs/react-router)

 Collection of React components to consume the Twitter Bootstrap library—React-

Bootstrap (https://react-bootstrap.github.io)

The ecosystem of libraries for React is growing every day. Also, React’s ability to describe

composable components (self-contained chunks of the UI) is helpful in reusing code.

There are many components packaged as npm modules. Just to illustrate the point that

having small composable components is good for code reuse, here are some popular

React components:

 Datepicker component: https://github.com/Hacker0x01/react-datepicker

 Set of tools to handle form rendering and validation: https://github.com/

prometheusresearch/react-forms

 WAI-ARIA-compliant autocomplete (combo box) component: https://

github.com/reactjs/react-autocomplete

Then there’s JSX, which is probably the most frequent argument for not using React.

If you’re familiar with Angular, then you’ve already had to write a lot of JavaScript in

your template code. This is because in modern web development, plain HTML is too

static and is hardly any use by itself. My advice: give React the benefit of the doubt,

and give JSX a fair run.

 JSX is a little syntax for writing React objects in JavaScript using <> as in

XML/HTML. React pairs nicely with JSX because developers can better implement and

read the code. Think of JSX as a mini-language that’s compiled into native JavaScript.

So, JSX isn’t run on the browser but is used as the source code for compilation. Here’s

a compact snippet written in JSX:

if (user.session)
return Logout

else
return Login

Even if you load a JSX file in your browser with the runtime transformer library that

compiles JSX into native JavaScript on the run, you still don’t run the JSX; you run

21Your first React code: Hello World

JavaScript instead. In this sense, JSX is akin to CoffeeScript. You compile these lan-

guages into native JavaScript to get better syntax and features than that provided by

regular JavaScript.

 I know that to some of you, it looks bizarre to have XML interspersed with

JavaScript code. It took me a while to adjust, because I was expecting an avalanche of

syntax error messages. And yes, using JSX is optional. For these two reasons, I’m not

covering JSX until chapter 3; but trust me, it’s powerful once you get a handle on it.

 By now, you have an understanding of what React is, its stack, and its place in the

higher-level SPA. It’s time to get your hands dirty and write your first React code.

1.6 Your first React code: Hello World

Let’s explore your first React code—the quintessential example used for learning pro-

gramming languages—the Hello World application. (If we don’t do this, the gods of

programming might punish us!) You won’t be using JSX yet, just plain JavaScript. The

project will print a “Hello world!!!” heading (<h1>) on a web page. Figure 1.4 shows

how it will look when you’re finished (unless you’re not quite that enthusiastic and

prefer a single exclamation point).

The folder structure of the project is simple. It consists of two JavaScript files in the js

folder and one HTML file, index.html:

/hello-world
/js
react.js
react-dom.js

index.html

Figure 1.4 Hello World

Learning React first without JSX

Although most React developers write in JSX, browsers will only run standard

JavaScript. That’s why it’s beneficial to be able to understand React code in pure

JavaScript. Another reason we’re starting with plain JS is to show that JSX is optional,

albeit the de facto standard language for React. Finally, preprocessing JSX requires

some tooling.

I want to get you started with React as soon as possible without spending too much

time on setup in this chapter. You’ll perform all the necessary setup for JSX in chapter 3.

22 CHAPTER 1 Meeting React

The two files in the js folder are for the React library version 15.5.4:17 react-dom.js (web

browser DOM renderer) and react.js (React Core package). First, you need to download

the aforementioned React Core and ReactDOM libraries. There are many ways to do it.

I recommend using the files provided in the source code for this book, which you can

find at www.manning.com/books/react-quickly and https://github.com/azat-co/

react-quickly/tree/master/ch01/hello-world. This is the most reliable and easiest

approach, because it doesn’t require a dependency on any other service or tool. You

can find more ways to download React in appendix A.

WARNING Prior to version 0.14, these two libraries were bundled together.
For example, for version 0.13.3, all you needed was react.js. This book uses
React and React DOM version 15.5.4 (the latest as of this writing) unless
noted otherwise. For most of the projects in part 1, you’ll need two files:
react.js and react-com.js. In chapter 8, you’ll need prop-types
(www.npmjs.com/package/prop-types), which was part of React until ver-
sion 15.5.4 but is now a separate module.

After you place the React files in the js folder, create the index.html file in the hello-

world project folder. This HTML file will be the entry point of the Hello World applica-

tion (meaning you’ll need to open it in the browser).

 The code for index.html is simple and starts with the inclusion of the libraries in

<head>. In the <body> element, you create a <div> container with the ID content and

a <script> element (that’s where the app’s code will go later), as shown in the follow-

ing listing.

<!DOCTYPE html>
<html>

<head>
<script src="js/react.js"></script>)
<script src="js/react-dom.js"></script>

</head>
<body>
<div id="content"></div>
<script type="text/javascript">

...
</script>

</body>
</html>

Why not render the React element directly in the <body> element? Because doing so

can lead to conflict with other libraries and browser extensions that manipulate the

17 v15.5.4 is the latest as of this writing. Typically, major releases like 14, 15, and 16 incorporate significant dif-
ferences, whereas minor releases like 15.5.3 and 15.5.4 have fewer breaking changes and conflicts. The code
for this book was tested for v15.5.4. The code may work with future versions, but I can’t guarantee that it will
work because no one knows what will be in the future versions—not even the core contributors.

Listing 1.1 Loading React libraries and code (index.html)

Imports the
React library

Imports the
ReactDOM library

Defines an empty <div>
element to mount the
React UI

Starts the React code for
the Hello World view

23Your first React code: Hello World

document body. In fact, if you try attaching an element directly to the body, you’ll get

this warning:

Rendering components directly into document.body is discouraged...

This is another good thing about React: it has great warning and error messages!

NOTE React warning and error messages aren’t part of the production build,
in order to reduce noise, increase security, and minimize the distribution size.
The production build is the minified file from the React Core library: for
example, react.min.js. The development version with the warnings and error
messages is the unminified version: for example, react.js.

By including the libraries in the HTML file, you get access to the React and ReactDOM

global objects: window.React and window.ReactDOM. You’ll need two methods from

those objects: one to create an element (React) and another to render it in the <div>

container (ReactDOM), as shown in listing 1.2.

 To create a React element, all you need to do is call React.createElement(element-

Name, data, child) with three arguments that have the following meanings:

 elementName—HTML as a string (for example, 'h1') or a custom component

class as an object (for example, HelloWorld; see section 2.2)

 data—Data in the form of attributes and properties (we’ll cover properties

later); for example, null or {name: 'Azat'}

 child—Child element or inner HTML/text content; for example, Hello world!

var h1 = React.createElement('h1', null, 'Hello world!')
ReactDOM.render(

h1,
document.getElementById('content')

)

This listing gets a React element of the h1 type and stores the reference to this

object into the h1 variable. The h1 variable isn’t an actual DOM node; rather, it’s an

instantiation of the React h1 component (element). You can name it any way you

want: helloWorldHeading, for example. In other words, React provides an abstrac-

tion over the DOM.

NOTE The h1 variable name is arbitrary. You can name this variable anything
you want (such as bananza), as long as you use the same variable in React-
DOM.render().

Listing 1.2 Creating and rendering an h1 element (index.html)

Creates and saves in a
variable a React element
of h1 type

Renders the h1 element in the real
DOM element with ID "content"

24 CHAPTER 1 Meeting React

Once the element is created and stored in h1, you render it to the DOM node/element

with ID content using the ReactDOM.render() method shown in listing 1.2. If you pre-

fer, you can move the h1 variable to the render call. The result is the same, except you

don’t use an extra variable:

ReactDOM.render(
React.createElement('h1', null, 'Hello world!'),
document.getElementById('content')

)

Now, open the index.html file served by a static HTTP web server in your favorite

browser. I recommend using an up-to-date version of Chrome, Safari, or Firefox. You

should see the “Hello world!” message on the web page, as shown in figure 1.5.

 This figure shows the Elements tab in Chrome DevTools with the <h1> element

selected. You can observe the data-reactroot attribute; it indicates that this element

was rendered by ReactDOM.

 One quick note: you can abstract the React code (listing 1.2) into a separate file

instead of creating elements and rendering them with ReactDOM.render() all in the

index.html file (listing 1.1). For example, you can create script.js and copy and paste

the h1 element and ReactDOM.render() call into that file. Then, in index.html, you

need to include script.js after the <div> with ID content, like this:

<div id="content"></div>
<script src="script.js"></script>

Figure 1.5 Inspecting the Hello World app as rendered by React

25Summary

Congratulations! You’ve just implemented your first React code!

1.7 Quiz

1 The declarative style of programming doesn’t allow for mutation of stored val-

ues. It’s “this is what I want” versus the imperative style’s “this is how to do it.”

True or false?

2 React components are rendered into the DOM with which of the following meth-

ods? (Beware, it’s a tricky question!) ReactDOM.renderComponent, React.render,

ReactDOM.append, or ReactDOM.render

3 You have to use Node.js on the server to be able to use React in your SPA. True

or false?

4 You must include react-com.js in order to render React elements on a web page.

True or false?

5 The problem React solves is that of updating views based on data changes. True

or false?

1.8 Summary

 React is declarative; it’s only a view or UI layer.

 React uses components that you bring into existence with ReactDOM.render().

 React component classes are created with class and its mandatory render()

method.

 React components are reusable and take immutable properties that are accessi-

ble via this.props.NAME.

Local dev web server

It’s better to use a local web server instead of opening an index.html file in the browser

directly, because with a web server, your JavaScript apps will be able to make AJAX/XHR

requests. You can tell whether it’s a server or a file by looking at the URL in the address

bar. If the address starts with file, then it’s a file; and if the address starts with http,

then it’s a server. You’ll need this feature for future projects. Typically, a local HTTP

web server listens to incoming requests on 127.0.0.1 or localhost.

You can get any open source web server, such as Apache, MAMP, or (my favorites

because they’re written in Node.js) node-static (https://github.com/cloud-

head/node-static) or http-server (www.npmjs.com/package/http-server). To install

node-static or http-server, you must have Node.js and npm installed. If you don’t have

them, you can find installation instructions for Node and npm in appendix A or by

going to http://nodejs.org.

Assuming you have Node.js and npm on your machine, run npm i -g node-static or

npm i -g http-server in your terminal or command prompt. Then, navigate to the

folder with the source code, and run static or http-server. In my case, I’m launching

static from the react-quickly folder, so I need to put the path to Hello World in my

browser URL bar: http://localhost:8080/ch01/hello-world/ (see figure 1.5).

26 CHAPTER 1 Meeting React

 You use pure JavaScript to develop and compose UIs in React.

 You don’t need to use JSX (an XML-like syntax for React objects); JSX is optional

when developing with React!

 To summarize the definition of React: React for the web consists of the React

Core and ReactDOM libraries. React Core is a library geared toward building

and sharing composable UI components using JavaScript and (optionally) JSX

in an isomorphic/universal manner. On the other hand, to work with React in

the browser, you can use the ReactDOM library, which has methods for DOM

rendering as well as for server-side rendering.

1.9 Quiz answers

1True. Declarative is a “what I want” style, and imperative is a “this is how to do it” style.

2ReactDOM.render.

3False. You can use any back-end technology.

4True. You need the ReactDOM library.

5True. This is the primary problem that React solves.

27

Baby steps with React

This chapter will teach you how to take baby steps with React and lays the foundation

for the following chapters. It’s crucial for understanding React concepts such as ele-

ments and components. In a nutshell, elements are instances of components (also called

component classes). What are their use cases, and why do you use them? Read on!

NOTE The source code for the examples in this chapter is at www.manning
.com/books/react-quickly and https://github.com/azat-co/react-quickly/
tree/master/ch02 (in the ch02 folder of the GitHub repository
https://github.com/azat-co/react-quickly). You can also find some demos
at http://reactquickly.co/demos.

2.1 Nesting elements

In the last chapter, you learned how to create a React element. As a reminder, the

method you use is React.createElement(). For example, you can create a link ele-

ment like this:

This chapter covers

 Nesting elements

 Creating a component class

 Working with properties

Watch this chapter’s introduction video by

scanning this QR code with your phone or going

to http://reactquickly.co/videos/ch02.

28 CHAPTER 2 Baby steps with React

let linkReactElement = React.createElement('a',
{href: 'http://webapplog.com'},
'Webapplog.com'

)

The problem is that most UIs have more than one element (such as a link inside a

menu). For example, in figure 2.1, there are buttons in the section, video thumbnails,

and a YouTube player.

 The solution to creating more-complex structures in a hierarchical manner is nest-

ing elements. In the previous chapter, you implemented your first React code by creat-

ing an h1 React element and rendering it in the DOM with ReactDOM.render():

let h1 = React.createElement('h1', null, 'Hello world!')
ReactDOM.render(

h1,
document.getElementById('content')

)

It’s important to note that ReactDOM.render() takes only one element as an argu-

ment, which is h1 in the example (the view is shown in figure 2.2).

Figure 2.1 The React Quickly website has many nested UI elements.

29Nesting elements

As I mentioned at the beginning of this section, the problem

arises when you need to render two same-level elements (for

example, two h1 elements). In this case, you can wrap the ele-

ments in a visually neutral element, as shown in figure 2.3.

The <div> container is usually a good choice, as is .

 You can pass an unlimited number of parameters to

createElement(). All the parameters after the second one

become child elements. Those child elements (h1, in this

case) are siblings—that is, they’re on the same level relative

to each other, as you can see in figure 2.4, which shows Dev-

Tools open in Chrome.

Figure 2.2 Rendering a single heading element

Figure 2.4 React DevTools

shows a <div> wrapper for

nested sibling h1 elements.

ReactDOM.render()

div

h1 h1

Figure 2.3 Structuring a

React render by using a

wrapper <div> container

to render sibling headings

30 CHAPTER 2 Baby steps with React

Knowing this, let’s use createElement() to create the <div> element with two <h1>

child elements (ch02/hello-world-nested/index.html).

let h1 = React.createElement('h1', null, 'Hello world!')
ReactDOM.render(

React.createElement('div', null, h1, h1),
document.getElementById('content')

)

The HTML code can stay the same as in the Hello World example from chapter 1, as

long as you include the necessary React and ReactDOM libraries and have the content

node (ch02/hello-world-nested/index.html).

<!DOCTYPE html>
<html>

<head>
<script src="js/react.js"></script>
<script src="js/react-dom.js"></script>

</head>
<body>
<div id="content"></div>
<script type="text/javascript">
...
</script>

</body>
</html>

So far, you’ve only provided string values as the first parameter of createElement().

But the first parameter can have two types of input:

Listing 2.1 Creating a <div> element with two <h1> children

Listing 2.2 HTML for the nested elements example without the React code

React Developer Tools

In addition to the Elements tab, which is included by default in Chrome DevTools, you

can install an extension (or plug-in) called React Developer Tools. It’s the last tab in

figure 2.4. React Developer Tools is available for Firefox as well. It lets you inspect

the results of React rendering closely, including the component’s hierarchy, name,

properties, states, and more.

Here’s the GitHub repository: https://github.com/facebook/react-devtools. You can

also find React Developer Tools for Chrome at http://mng.bz/V276 and for Firefox at

http://mng.bz/59V9.

If the third parameter
of createElement() is a
string, it specifies the
text value of the
element being created.

If the third and subsequent parameters
aren’t text, they specify the child

elements of the element being created.

31Creating component classes

 Standard HTML tag as a string; for example, 'h1', 'div', or 'p' (without the

angle brackets). The name is lowercase.

 React component classes as an object; for example, HelloWorld. The name is

capitalized.

The first approach renders standard HTML elements. React goes through its list of stan-

dard HTML elements and, when and if it finds a match, uses it as a type for the React ele-

ment. For example, when you pass 'p', React will find a match because p is a paragraph

tag name. This will produce <p> in the DOM when/if you render this React element.

 Now let’s look at the second type of input: creating and providing custom compo-

nent classes.

2.2 Creating component classes

After nesting elements with React, you’ll stumble across the next problem: soon, there

are a lot of elements. You need to use the component-based architecture described in

chapter 1, which lets you reuse code by separating the functionality into loosely cou-

pled parts. Meet component classes, or just components, as they’re often called for brevity

(not to be confused with web components).

 Think of standard HTML tags as building blocks. You can use them to compose

your own React component classes, which you can use to create custom elements

(instances of classes). By using custom elements, you can encapsulate and abstract

logic in portable classes (composable reusable components). This abstraction allows

teams to reuse UIs in large, complex applications as well as in different projects.

Examples include autocomplete components, toolboxes,

menus, and so on.

 Creating the 'Hello world!' element with an HTML

tag in the createElement() method was straightforward:

(createElement('h1', null, 'Hello World!'). But what

if you need to separate Hello World into its own class, as

shown in figure 2.5? Let’s say you need to reuse Hello

World in 10 different projects! (You probably wouldn’t

use it that many times, but a good autocomplete compo-

nent will definitely be reused.)

 Interestingly, you create a React component class by

extending the React.Component class with class CHILD

extends PARENT ES6 syntax. Let’s create a custom Hello-

World component class using class HelloWorld extends

React.Component.

 The one mandatory thing you must implement for

this new class is the render() method. This method must

return a single React element, createElement(), which is

created from another custom component class or an

HTML tag. Both can have nested elements.

ReactDOM.render()

div

HelloWorld

h1 h1

Figure 2.5 Rendering a

<div> element created from

a custom component class

instead of rendering it directly

32 CHAPTER 2 Baby steps with React

 Listing 2.3 (ch02/hello-world-class/js/script.js) shows how you can refactor the

nested Hello World example (listing 2.1) into an app with a custom React component

class, HelloWorld. The benefit is that with a custom class, you can reuse this UI better.

The mandatory render() method of the HelloWorld component returns the same

<div> element from the previous example. Once you’ve created the custom HelloWorld

class, you can pass it as an object (not as a string) to ReactDOM.render().

let h1 = React.createElement('h1', null, 'Hello world!')
class HelloWorld extends React.Component {

render() {
return React.createElement('div', null, h1, h1)

}
}
ReactDOM.render(

React.createElement(HelloWorld, null),
document.getElementById('content')

)

By convention, the names of variables containing React components are capitalized.

This isn’t required in regular JS (you can use the lowercase variable name

helloWorld); but because it’s necessary in JSX, you apply this convention here. (In

JSX, React uses uppercase and lowercase to differentiate a custom component like

<HelloWorld/> from a regular HTML element such as <h1/>. But in regular JS, it’s

differentiated by passing either a variable such as HelloWorld or a string such as 'h1'.

It’s a good idea to start using capitalization convention for custom components now.)

More about JSX in chapter 3.

Listing 2.3 Creating and rendering a React component class

Defines a React component
class with the capitalized name

Creates a
render()

method as an
expression

(function
returning a

single element)

Implements a return
statement with a single

React element so the
React class can invoke

render() and receive
the <div> element

with two h1 elements

Attaches
 the React

element to
the real DOM
element with
ID “content”

Uses the HelloWorld class to create an
element by passing the object, instead
of a string, as the first argument

ES6+/ES2015+ and React

The component class example defines render() using ES6 style, in which you omit

the colon and the word function. It’s exactly the same as defining an attribute (a.k.a.

key or object property) with a value that’s a function: that is, typing render: function().

My personal preference, and my recommendation to you, is to use the ES6 method style

because it’s shorter (the less you type, the fewer mistakes you make).

Historically, React had its own method to create a component class: React
.createClass(). There are slight differences between using the ES6 class to extend

React.Component and using React.createClass(). Typically, you’d use either

class (recommended) or createClass(), but not both. Moreover, in React 15.5.4,

createClass() is deprecated (that is, no longer supported).

33Creating component classes

Analogous to ReactDOM.render(), the render() method in createClass() can only

return a single element. If you need to return multiple same-level elements, wrap them in

a <div> container or another unobtrusive element such as . You can run the

code in your browser; the result is shown in figure 2.6.1

You may think you didn’t gain much with the refactoring; but what if you need to

print more Hello World statements? You can do so by reusing the HelloWorld compo-

nent multiple times and wrapping them in a <div> container:

...
ReactDOM.render(

React.createElement(
'div',
null,
React.createElement(HelloWorld),
React.createElement(HelloWorld),

1 ECMAScript 6 Compatibility Table, https://kangax.github.io/compat-table/es6.

(continued)

Although you may still see the React.createClass() method used by some teams,

the general tendency in the React world is to move toward a common standard: using

the ES6 class approach. This book is forward thinking and uses the most popular

tools and approaches, so it focuses on ES6. You can find ES5 examples for some of

this book’s projects in the GitHub repository, prefixed with -es5; they were for an early

version of the book.

As of August 2016, most modern browsers support these ES6 (and almost all other)

features natively (without extra tools),1 so I assume you’re familiar with it. If you’re not,

or if you need a refresher or more information on ES6+/ES2015+ and its primary fea-

tures as they relate to React, see appendix E or a comprehensive book such as Exploring

ES6 by Dr. Axel Rauschmayer (free online version: http://exploringjs.com/es6).

Figure 2.6 Rendering an

element created from a custom

HelloWorld component class

34 CHAPTER 2 Baby steps with React

React.createElement(HelloWorld)
),
document.getElementById('content')

)

This is the power of component reusability! It leads to faster development and fewer

bugs. Components also have lifecycle events, states, DOM events, and other features

that let you make them interactive and self-contained; these are covered in the follow-

ing chapters.

 Right now, the HelloWorld elements will all be the same. Is there a way to custom-

ize them? What if you could set element attributes and modify their content and/or

behavior? Meet properties.

2.3 Working with properties

Properties are a cornerstone of the declarative style that React uses. Think of properties

as unchangeable values within an element. They allow elements to have different vari-

ations if used in a view, such as changing a link URL by passing a new value for a property:

React.createElement('a', {href: 'http://node.university'})

One thing to remember is that properties are immutable within their components. A par-

ent assigns properties to its children upon their creation. The child element isn’t sup-

posed to modify its properties. (A child is an element nested inside another element;

for example, <h1/> is a child of <HelloWorld/>.) For instance, you can pass a property

PROPERTY_NAME with the value VALUE, like this:

<TAG_NAME PROPERTY_NAME=VALUE/>

Properties closely resemble HTML attributes. This is one of their purposes, but they

also have another: you can use the properties of an element in your code as you wish.

Properties can be used as follows:

 To render standard HTML attributes of an element: href, title, style, class,

and so on

 In the JavaScript code of a React component class via this.props values; for

example, this.props.PROPERTY_NAME (replacing PROPERTY_NAME with your

arbitrary name)

Under the hood, React will match the property name (PROPERTY_NAME) with the list of

standard attributes. If there’s a match, the property will be rendered as an attribute of

an element (the first scenario). The value of this attribute is also accessible in

this.props.PROPERTY_NAME in the component class code.

 If there’s no match with any of the standard HTML attribute names (the second

scenario), then the property name isn’t a standard attribute. It won’t be rendered as

an attribute of an element. But the value will still be accessible in the this.props

object; for example, this.props.PROPERTY_NAME. It can be used in your code or

rendered explicitly in the render() method. This way, you can pass different data to

35Working with properties

different instances of the same class. This allows you to reuse components, because

you can programmatically change how elements are rendered by providing differ-

ent properties.2345

 You can even take this feature of properties a step further and completely modify

the rendered elements based on the value of a property. For example, if

this.props.heading is true, you render “Hello” as a heading. If it’s false, you render

“Hello” as a normal paragraph:

render() {
if (this.props.heading) return <h1>Hello</h1>
else return <p>Hello</p>

}

In other words, you can use the same component—but provided with different prop-

erties, the elements rendered by the component can be different. Properties can be

rendered by render(), used in components’ code, or used as HTML attributes.

 To demonstrate the properties of components, let’s slightly modify HelloWorld

with props. The goal is to reuse the HelloWorld component such that each instance of

this class renders different text and different HTML attributes. You’ll enhance the

HelloWorld headings (<h1> tag) with three properties (see figure 2.7):

 id—Matches the standard attribute id and is automatically rendered by React

 frameworkName—Doesn’t match any standard attributes for <h1>, but is explic-

itly printed in the text of headings

 title—Matches the standard attribute title and is automatically rendered by

React

2 Mozilla Developer Network, Object.freeze(), http://mng.bz/p6Nr.
3 Mozilla Developer Network, Object.isFrozen(), http://mng.bz/0P75.
4 GitHub, 2016-04-07-react-v15, http://mng.bz/j6c3.
5 GitHub, “freeze” search results, http://mng.bz/2l0Z.

Object.freeze() and Object.isFrozen()

Internally, React uses Object.freeze()2 from the ES5 standard to make the

this.props object immutable. To check whether an object is frozen, you can use the

Object.isFrozen() method.3 For example, you can determine whether this state-

ment will return true:

class HelloWorld extends React.Component {
render() {
console.log(Object.isFrozen(this.props))
return React.createElement('div', null, h1, h1)

}
}

If you’re interested in more details, I encourage you to read the React changelog4 and

search on React’s GitHub repository.5

36 CHAPTER 2 Baby steps with React

If a property’s name matches a standard HTML attribute, it will be rendered as an attri-

bute of the <h1> element, as shown in figure 2.7. So the two properties id and title

will be rendered as <h1> attributes, but not frameworkName. You may even get a warn-

ing about the unknown frameworkName property (because it’s not in the HTML speci-

fication). How nice!

 Let’s zoom in on the <div> element implementation (figure 2.8). Obviously, it

needs to render three child elements of the HelloWorld class, but the text and attri-

butes of the resulting headings (<h1/>) must be different. For example, you pass id,

frameworkName, and title. They’ll be part of the HelloWorld class.

 Before you implement <h1/>, you need to pass the properties to HelloWorld. How

do you do this? By passing these properties in an object literal in the second argument

to createElement() when you create HelloWorld elements in the <div> container:

ReactDOM.render(
React.createElement(
'div',
null,
React.createElement(HelloWorld, {

id: 'ember',
frameworkName: 'Ember.js',
title: 'A framework for creating ambitious web applications.'}),

React.createElement(HelloWorld, {
id: 'backbone',
frameworkName: 'Backbone.js',
title: 'Backbone.js gives structure to web applications...'}),

React.createElement(HelloWorld, {
id: 'angular',
frameworkName: 'Angular.js',
title: 'Superheroic JavaScript MVW Framework'})

),
document.getElementById('content')

)

HelloWorld

id title

frameworkName

HelloWorld

div

id title

frameworkName

HelloWorld

id title

frameworkName

h1

div

id title

h1

id title

h1

id title

Render

Figure 2.7 The component class HelloWorld renders properties

that are standard HTML attributes, but not frameworkName.

37Working with properties

Now let’s look at the HelloWorld component implementation. The way React works is

that the second parameter to createElement() (for example, {id: 'ember'...}) is

an object whose properties are accessible via the this.props object inside the compo-

nent’s render() method. Therefore, you can access the value of frameworkName as

shown in the following listing.

class HelloWorld extends React.Component {
render() {
return React.createElement(

'h1',
null,
'Hello ' + this.props.frameworkName + ' world!!!'

)
}

}

The keys of the this.props object are exactly the same as the keys of the object

passed to createElement() as the second parameter. That is, this.props has id,

Listing 2.4 Using the frameworkName property in the render() method

HelloWorld

id title

frameworkName

HelloWorld

id title

frameworkNameame fraraam

HelloWorld

div (React element)

id title

frameworkName

HelloWorld (React element)

div (React element)

id

id

title

h1 (React element)

title

h1

div (DOM element)

id title

h1

id title

h1

id title

Render

frameworkName

frameworkName

'Hello' + this.props.frameworkName+ 'world!!!' 'He!!'

Figure 2.8 The HelloWorld class is used three times to generate three h1 elements that have different

attributes and innerHTML.

Concatenates (combines) three strings:
“Hello”, “this.props.frameworkName”,

and “world!!!”

38 CHAPTER 2 Baby steps with React

frameworkName, and title keys. The number of key/value pairs you can pass in the

second argument to React.createElement() is unlimited.

 In addition, you may have already guessed that it’s possible to pass all the proper-

ties of HelloWorld to its child <h1/>. This can be extremely useful when you don’t

know what properties are passed to a component; for example, in HelloWorld, you

want to leave the style attribute value up to a developer instantiating HelloWorld.

Therefore, you don’t limit what attributes to render in <h1/>.

class HelloWorld extends React.Component {
render() {
return React.createElement(

'h1',
this.props,
'Hello ' + this.props.frameworkName + ' world!!!'

)
}

}

Then, you render three HelloWorld elements into the <div> with the ID content, as

shown in the following listing (ch02/hello-js-world/js/script.js) and figure 2.9.

class HelloWorld extends React.Component {
render() {
return React.createElement(

'h1',
this.props,
'Hello ' + this.props.frameworkName + ' world!!!'

)
}

}
ReactDOM.render(

React.createElement(
'div',
null,
React.createElement(HelloWorld, {

id: 'ember', 3((CO5-3))
frameworkName: 'Ember.js',
title: 'A framework for creating ambitious web applications.'}),

React.createElement(HelloWorld, {
id: 'backbone',
frameworkName: 'Backbone.js',
title: 'Backbone.js gives structure to web applications...'}),

React.createElement(HelloWorld, {
id: 'angular',
frameworkName: 'Angular.js',
title: 'Superheroic JavaScript MVW Framework'})

),
document.getElementById('content')

)

Listing 2.5 Passing all the properties from HelloWorld to <h1>

Listing 2.6 Using properties passed during element creation

Passes all the
properties to the child
heading element

Any properties passed into
HelloWorld when createElement
is called are passed into this
<h1> element.

Outputs the
frameworkName
property as text

in <h1>

id and title correspond to
standard HTML attributes

for <h1> and are rendered
as those attributes.

frameworkName
 isn’t a standard

HTML attribute for
<h1>, so it won’t be

rendered unless you
do something with it.

39Quiz

As usual, you can run this code via a local HTTP web server. The result of reusing the

HelloWorld component class is three different headings (see figure 2.9).

 You used this.props to render different text for the headings. You used proper-

ties to render different titles and IDs. Thus, you effectively reused most of the code,

which makes you the master of React HelloWorld component classes!

 We’ve covered several permutations of Hello World. Yes, I know, it’s still the bor-

ing, good-old Hello World. But by starting small, we’re building a solid foundation for

future, more-advanced topics. Believe me, you can achieve a lot of great things with

component classes.

 It’s very important to know how React works in regular JavaScript events if you

(like many React engineers) plan to use JSX. This is because in the end, browsers

will still run regular JS, and you’ll need to understand the results of the JSX-to-JS

transpilation from time to time. Going forward, we’ll be using JSX, which is covered

in the next chapter.

2.4 Quiz

1 A React component class can be created with which of the following?

createComponent(), createElement(), class NAME extends React.Component,

class NAME extends React.Class

2 The only mandatory attribute or method of a React component is which of the

following? function, return, name, render, class

3 To access the url property of a component, you use which of the following?

this.properties.url, this.data.url, this.props.url, url

Figure 2.9 Result of reusing HelloWorld with different properties to render three different headings

40 CHAPTER 2 Baby steps with React

4 React properties are immutable in a context of a current component. True or

false?

5 React component classes allows developers to create reusable UIs. True or false?

2.5 Summary

 You can nest React elements using third, fourth, and so on arguments in create-

Element().

 Create elements from custom component classes.

 Modify the resulting elements using properties.

 You can pass properties to child element(s).

 To use a component-based architecture (one of the features of React), you cre-

ate components.

2.6 Quiz answers

1class NAME extends React.Component, because there’s no React.Class and others

will fail due to ReferenceError (not defined).

2render() because it’s the only required method; also, because function, return,

render, and class are not valid, and name is optional.

3this.props.url because only this.props gives the properties object.

4True. It’s impossible to change a property.

5True. Developers use new components to create reusable UIs.

41

Introduction to JSX

Welcome to JSX! It’s one of the greatest things about React, in my opinion—and

one of the most controversial subjects related to React in the minds of a few devel-

opers I spoke with (who, not surprisingly, haven’t yet built anything large in React).

 Thus far, we’ve covered how to create elements and components so that you can

use custom elements and better organize your UIs. You used JavaScript to create

React elements, instead of working with HTML. But there’s a problem. Look at this

code, and see if you can tell what’s happening:

render() {
return React.createElement(
'div',
{ style: this.styles },
React.createElement(

'p',
null,
React.createElement(

reactRouter.Link,
{ to: this.props.returnTo },

This chapter covers

 Understanding JSX and its benefits

 Setting up JSX transpilers with Babel

 Being aware of React and JSX gotchas

Watch this chapter’s introduction video by

scanning this QR code with your phone or going

to http://reactquickly.co/videos/ch03.

42 CHAPTER 3 Introduction to JSX

'Back'
)

),
this.props.children

);
}

Were you able to tell that there are three elements, that they’re nested, and that the

code uses a component from React Router? How readable is this code, compared to

standard HTML? Do you think this code is eloquent? The React team agrees that read-

ing (and typing, for that matter) a bunch of React.createElement() statements isn’t

fun. JSX is the solution to this problem.

NOTE The source code for the examples in this chapter is at www.manning
.com/books/react-quickly and https://github.com/azat-co/react-quickly/
tree/master/ch03 (in the ch03 folder of the GitHub repository
https://github.com/azat-co/react-quickly). You can also find some demos at
http://reactquickly.co/demos.

3.1 What is JSX, and what are its benefits?

JSX is a JavaScript extension that provides syntactic sugar (sugar-coating) for function

calls and object construction, particularly React.createElement(). It may look like a

template engine or HTML, but it isn’t. JSX produces React elements while allowing

you to harness the full power of JavaScript.

 JSX is a great way to write React components. Its benefits include the following:

 Improved developer experience (DX)—Code is easier to read because it’s more elo-

quent, thanks to an XML-like syntax that’s better at representing nested declara-

tive structures.

 More-productive team members—Casual developers (such as designers) can modify

code more easily, because JSX looks like HTML, which is already familiar to them.

 Fewer wrist injuries and syntax errors—Developers have less code to type (that is,

less sugar-coating), which means they make fewer mistakes and are less likely to

develop repetitive-stress injuries.

Although JSX isn’t required for React, it fits in nicely and is highly recommended by

me and React’s creators. The official “Introducing JSX” page1 states, “We recommend

using [JSX] with React.”

 To demonstrate the eloquence of JSX, this is the code to create HelloWorld and an

a link element:

<div>
<HelloWorld/>

Great JS Resources

</div>

1 https://facebook.github.io/react/docs/introducing-jsx.html.

43What is JSX, and what are its benefits?

That’s analogous to the following JavaScript:

React.createElement(
"div",
null,
React.createElement(HelloWorld, null),
React.createElement("br", null),
React.createElement(
"a",
{ href: "http://webapplog.com" },
"Great JS Resources"

)
)

And if you use Babel v6 (one of the tools for JSX; more on Babel in a few pages), the JS

code becomes this:

"use strict";

React.createElement(
"div",
null,
" ",
React.createElement(HelloWorld, null),
" ",
React.createElement("br", null),
" ",
React.createElement(
"a",
{ href: "http://webapplog.com" },
"Great JS Resources"

),
" "

);

In essence, JSX is a small language with an XML-like syntax; but it has changed the way

people write UI components. Previously, developers wrote HTML—and JS code for con-

trollers and views—in an MVC-like manner, jumping between various files. That stemmed

from the separation of concerns in the early days. This approach served the web well

when it consisted of static HTML, a little CSS, and a tiny bit of JS to make text blink.

 This is no longer the case; today, we build highly interactive UIs, and JS and HTML

are tightly coupled to implement various pieces of functionality. React fixes the bro-

ken separation of concerns (SoC) principle by bringing together the description of

the UI and the JS logic; and with JSX, the code looks like HTML and is easier to read

and write. If for no other reason, I’d use React and JSX just for this new approach to

writing UIs.

 JSX is compiled by various transformers (tools) into standard ECMAScript (see fig-

ure 3.1). You probably know that JavaScript is ECMAScript, too; but JSX isn’t part of

the specification, and it doesn’t have any defined semantics.

44 CHAPTER 3 Introduction to JSX

NOTE According to https://en.wikipedia.org/wiki/Source-to-source_compiler,
“A source-to-source compiler, transcompiler, or transpiler is a type of compiler that
takes the source code of a program written in one programming language as its
input and produces the equivalent source code in another programming
language.”

You may wonder, “Why should I bother with JSX?” That’s a great question. Consider-

ing how counterintuitive JSX code looks to begin with, it’s no surprise that many devel-

opers are turned off by this amazing technology. For example, this JSX shows that

there are angle brackets in the JavaScript code, which looks bizarre at first:

ReactDOM.render(<h1>Hello</h1>, document.getElementById('content'))

What makes JSX amazing are the shortcuts to React.createElement(NAME, ...).

Instead of writing that function call over and over, you can instead use <NAME/>. And

as I said earlier, the less you type, the fewer mistakes you make. With JSX, DX is as

important as user experience (UX).

 The main reason to use JSX is that many people find code with angle brackets (< >)

easier to read than code with a lot of React.createElement() statements (even when

they’re aliased). And once you get into the habit of thinking about <NAME/> not as

XML, but as an alias to JavaScript code, you’ll get over the perceived weirdness of JSX

syntax. Knowing and using JSX can make a big difference when you’re developing

React components and, subsequently, React-powered applications.

2. Transpiler 3. JS 4. Browser1. JSX

Figure 3.1 JSX is transpiled into regular JavaScript.

Alternative shortcuts

To be fair, there are a few alternatives to JSX when it comes to avoiding typing ver-

bose React.createElement() calls. One of them is to use the alias React.DOM.*.

For example, instead of creating an <h1/> element with

React.createElement('h1', null, 'Hey')

the following will also suffice and requires less space and time to implement:

React.DOM.h1(null, 'Hey')

You have access to all the standard HTML elements in the React.DOM object, which

you can inspect like any other object:

console.log(React.DOM)

45Understanding JSX

As I mentioned earlier, JSX needs to be transpiled (or compiled, as it’s often called)

into regular JavaScript before browsers can execute its code. We’ll explore various

available methods for doing so, as well as the recommended method, in section 3.3.

3.2 Understanding JSX

Let’s explore how to work with JSX. You can read this section and keep it bookmarked

for your reference, or (if you prefer to have some of the code examples running on

your computer) you have the following options:

 Set up a JSX transpiler with Babel on your computer, as shown in section 3.3.

 Use the online Babel REPL service (https://babeljs.io/repl), which transpiles

JSX into JavaScript in the browser.

The choice is up to you. I recommend reading about the main JSX concepts first, and

then doing the proper Babel setup on your computer.

3.2.1 Creating elements with JSX

Creating ReactElement objects with JSX is straightforward. For example, instead of

writing the following JavaScript (where name is a string—h1—or component class

object—HelloWorld)

React.createElement(
name,
{key1: value1, key2: value2, ...},
child1, child2, child3, ..., childN

)

you can write this JSX:

<name key1=value1 key2=value2 ...>
<child1/>
<child2/>
<child3/>
...
<childN/>

</name>

(continued)

You can also type React.DOM and press Enter in the Chrome DevTools console. (Note

that React.DOM and ReactDOM are two completely different objects and shouldn’t be

confused or used interchangeably.)

Another alternative, recommended by the official React documentation for situations

where JSX is impractical (for example, when there’s no build process), is to use a

short variable. For example, you can create a variable E as follows:

const E = React.createElement
E('h1', null, 'Hey')

46 CHAPTER 3 Introduction to JSX

In the JSX code, the attributes and their values (for example, key1=value1) come

from the second argument of createElement(). We’ll focus on working with proper-

ties later in this chapter. For now, let’s look at an example of a JSX element without

properties. Here’s our old friend Hello World in JavaScript (ch03/hello-

world/index.html).

ReactDOM.render(
React.createElement('h1', null, 'Hello world!'),
document.getElementById('content')

)

The JSX version is much more compact (ch03/hello-world-jsx/js/script.jsx).

ReactDOM.render(
<h1>Hello world!</h1>,
document.getElementById('content')

)

You can also store objects created with JSX syntax in variables, because JSX is just a syn-

tactic improvement of React.createElement(). This example stores the reference to

the Element object in a variable:

let helloWorldReactElement = <h1>Hello world!</h1>
ReactDOM.render(

helloWorldReactElement,
document.getElementById('content')

)

3.2.2 Working with JSX in components

The previous example used the <h1> JSX tag, which is also a standard HTML tag name.

When working with components, you apply the same syntax. The only difference is

that the component class name must start with a capital letter, as in <HelloWorld/>.

 Here’s a more advanced iteration of Hello World, rewritten in JSX. In this case, you

create a new component class and use JSX to create an element from it.

class HelloWorld extends React.Component {
render() {
return (

<div>
<h1>1. Hello world!</h1>
<h1>2. Hello world!</h1>

</div>

Listing 3.1 Hello World in JavaScript

Listing 3.2 Hello World in JSX

Listing 3.3 Creating a HelloWorld class in JSX

47Understanding JSX

)
}

}
ReactDOM.render(

<HelloWorld/>,
document.getElementById('content')

)

Can you read listing 3.3 more easily than the following JavaScript code?

class HelloWorld extends React.Component {
render() {
return React.createElement('div',

null,
React.createElement('h1', null, '1. Hello world!'),
React.createElement('h1', null, '2. Hello world!'))

}
}
ReactDOM.render(

React.createElement(HelloWorld, null),
document.getElementById('content')

)

NOTE As I said earlier, seeing angle brackets in JavaScript code may be
strange for experienced JavaScript developers. My brain went bananas when I
first saw this, because for years I trained myself to spot JS syntax errors! The
brackets are the primary controversy regarding JSX and one of the most fre-
quent objections I hear; this is why we dive into JSX early in the book, so you
can get as much experience with it as possible.

Notice the parentheses after return in the JSX code in listing 3.3; you must include

them if you don’t type anything on the same line after return. For example, if you

start your top element, <div>, on a new line, you must put parentheses (()) around it.

Otherwise, JavaScript will finish the return with nothing. This style is as follows:

render() {
return (
<div>
</div>

)
}

Alternatively, you can start your top element on the same line as return and avoid the

necessary (). For example, this is valid as well:

render() {
return <div>
</div>

}

48 CHAPTER 3 Introduction to JSX

A downside of the second approach is the reduced visibility of the opening <div> tag:

it may be easy to miss in the code.2 The choice is up to you. I use both styles in this

book to give you a deeper perspective.

3.2.3 Outputting variables in JSX

When you compose components, you want them to be smart enough to change the

view based on some code. For example, it would be useful if a current date-time com-

ponent used a current date and time, not a hardcoded value.

 When working with JavaScript-only React, you have to resort to concatenation (+) or,

if you’re using ES6+/ES2015+, string templates marked by a backtick and ${varName},

where varName is the name of a variable. The official name for this feature is template

literal, according to the specification.3 For example, to use a property in text in a

DateTimeNow component in regular JavaScript React, you’d write this code:

class DateTimeNow extends React.Component {
render() {
let dateTimeNow = new Date().toLocaleString()
return React.createElement(

'span',
null,
`Current date and time is ${dateTimeNow}.`

)
}

}

Conversely, in JSX, you can use curly braces {} notation to output variables dynami-

cally, which reduces code bloat substantially:

class DateTimeNow extends React.Component {
render() {
let dateTimeNow = new Date().toLocaleString()
return Current date and time is {dateTimeNow}.
)

}
}

The variables can be properties, not just locally defined variables:

Hello {this.props.userName}, your current date and time is

➥ {dateTimeNow}.

Moreover, you can execute JavaScript expressions or any JS code inside of {}. For

example, you can format a date:

<p>Current time in your locale is

➥ {new Date(Date.now()).toLocaleTimeString()}</p>

2 For more about this behavior in JavaScript, see James Nelson, “Why Use Parenthesis [sic] on JavaScript Return
Statements?” August 11, 2016, http://jamesknelson.com/javascript-return-parenthesis; and “Automated
Semicolon Insertion,” Annotated ECMAScript 5.1, http://es5.github.io/#x7.9.

3 “Template Literals,” ECMAScript 2015 Language Specification, June 2015, http://mng.bz/i8Bw.

49Understanding JSX

Now, you can rewrite the HelloWorld class in JSX using the dynamic data that JSX

stores in a variable (ch03/hello-world-class-jsx).

let helloWorldReactElement = <h1>Hello world!</h1>
class HelloWorld extends React.Component {

render() {
return <div>

{helloWorldReactElement}
{helloWorldReactElement}

</div>
}

}
ReactDOM.render(

<HelloWorld/>,
document.getElementById('content')

)

Let’s discuss how you work with properties in JSX.

3.2.4 Working with properties in JSX

I touched on this topic earlier, when I introduced JSX: element properties are defined

using attribute syntax. That is, you use key1=value1 key2=value2… notation inside of

the JSX tag to define both HTML attributes and React component properties. This is

similar to attribute syntax in HTML/XML.

 In other words, if you need to pass properties, write them in JSX as you would in

normal HTML. Also, you render standard HTML attributes by setting element proper-

ties (discussed in section 2.3). For example, this code sets a standard HTML attribute

href for the anchor element <a>:

ReactDOM.render((
<div>
Time for React?
<DateTimeNow userName='Azat'/>

</div>
),
document.getElementById('content')

)

Using hardcoded values for attributes isn’t flexible. If you want to reuse the link com-

ponent, then the href must change to reflect a different address each time. This is

called dynamically setting values versus hardcoding them. So, next we’ll go a step fur-

ther and consider a component that can use dynamically generated values for attri-

butes. Those values can come from component properties (this.props). After that,

everything’s easy. All you need to do is use curly braces ({}) inside angle braces (<>)

to pass dynamic values of properties to elements.

 For example, suppose you’re building a component that will be used to link to user

accounts. href and title must be different and not hardcoded. A dynamic component

Listing 3.4 Outputting variables in JSX

Renders a
standard HTML
attribute href

Sets a value for the
userName property

50 CHAPTER 3 Introduction to JSX

ProfileLink renders a link <a> using the properties url and label for href and title,

respectively. In ProfileLink, you pass the properties to <a> using {}:

class ProfileLink extends React.Component {
render() {
return <a href={this.props.url}

title={this.props.label}
target="_blank">Profile

}

}

Where do the property values come from? They’re defined when the ProfileLink is

created—that is, in the component that creates ProfileLink, a.k.a. its parent. For

example, this is how the values for url and label are passed when a ProfileLink

instance is created, which results in the render of the <a> tag with those values:

<ProfileLink url='/users/azat' label='Profile for Azat'/>

From the previous chapter, you should remember that when rendering standard ele-

ments (<h>, <p>, <div>, <a>, and so on), React renders all attributes from the HTML

specification and omits all other attributes that aren’t part of the specification. This

isn’t a JSX gotcha; it’s React’s behavior.

 But sometimes you want to add custom data as an attribute. Let’s say you have a list

item; there’s some information that’s essential to your app but not needed by users. A

common pattern is to put this information in the DOM element as an attribute. This

example uses the attributes react-is-awesome and id:

<li react-is-awesome="true" id="320">React is awesome!

Storing data in custom HTML attributes in the DOM is generally considered an anti-

pattern, because you don’t want the DOM to be your database or a front-end data store.

Getting data from the DOM is slower than getting it from a virtual/in-memory store.

 In cases when you must store data as elements’ attributes, and you use JSX, you

need to use the data-NAME prefix. For example, to render the element with a

value of this.reactIsAwesome in an attribute, you can write this:

<li data-react-is-awesome={this.reactIsAwesome}>React is awesome!

Let’s say this.reactIsAwesome is true. Then, the resulting HTML is

<li data-react-is-awesome="true">React is awesome!

But if you attempt to pass a nonstandard HTML attribute to a standard HTML element,

the attribute won’t render (as covered in section 2.3). For example, this code

<li react-is-awesome={this.reactIsAwesome}>React is orange

and this code

<li reactIsAwesome={this.reactIsAwesome}>React is orange

51Understanding JSX

both produce only the following:

React is orange

Obviously, because custom elements (component classes) don’t have built-in render-

ers and rely on standard HTML elements or other custom elements, this issue of using

data- isn’t important for them. They get all attributes as properties in this.props.

 Speaking of component classes, this is the code from Hello World (section 2.3)

written in regular JavaScript:

class HelloWorld extends React.Component {
render() {
return React.createElement(

'h1',
this.props,
'Hello ' + this.props.frameworkName + ' world!!!'

)
}

}

In the HelloWorld components, you pass the properties through to <h1> no matter

what properties are there. How can you do this in JSX? You don’t want to pass each

property individually, because that’s more code; and when you need to change a prop-

erty, you’ll have tightly coupled code that you’ll need to update as well. Imagine hav-

ing to pass each property manually—and what if you have two or three levels of

components to pass through? That’s an antipattern. Don’t do this:

class HelloWorld extends React.Component {
render() {
return <h1 title={this.props.title} id={this.props.id}>

Hello {this.props.frameworkName} world!!!
</h1>

}
}

Don’t pass the properties individually when your intention is to pass all of them; JSX

offers a spread solution that looks like ellipses, ..., as you can see in the following list-

ing (ch03/jsx/hello-js-world-jsx).

class HelloWorld extends React.Component {
render() {
return <h1 {...this.properties}>

Hello {this.props.frameworkName} world!!!
</h1>

}
}

ReactDOM.render(
<div>

Listing 3.5 Working with properties

52 CHAPTER 3 Introduction to JSX

<HelloWorld
id='ember'
frameworkName='Ember.js'
title='A framework for creating ambitious web applications.'/>,

<HelloWorld
id='backbone'
frameworkName= 'Backbone.js'
title= 'Backbone.js gives structure to web applications...'/>

<HelloWorld
id= 'angular'
frameworkName= 'Angular.js'
title= 'Superheroic JavaScript MVW Framework'/>

</div>,
document.getElementById('content')

)4

With {...this.props}, you can pass every property to the child. The rest of the code

is just converted to the JSX example from section 2.3.

4 In the rest array, the first parameter is the one that doesn’t have a name: for example, the callback is at index
0, not 2, as in ES5’s arguments. Also, putting other named arguments after the rest parameter will cause a
syntax error.

Ellipses in ES6+/ES2015+: rest, spread, and destructuring

Speaking of ellipses, there are similar-looking operators in ES6+, called destructur-

ing, spread, and rest. This is one of the reasons React’s JSX uses ellipses!

If you’ve ever used or written a JavaScript function with a variable or unlimited

number of arguments, you know the arguments object. This object contains all

parameters passed to the function. The problem is that this arguments object isn’t

a real array. You have to convert it to an array if you want to use functions like

sort() and map() explicitly. For example, this request function converts argu-
ments using call():

function request(url, options, callback) {
var args = Array.prototype.slice.call(arguments, request.length)
var url = args[0]
var callback = args[2]
// ...

}

Is there a better way in ES6 to access an indefinite number of arguments as an array?

Yes! It’s the rest parameter syntax, defined with ellipses (…). For example, following

is the ES6 function signature with the rest parameter callbacks, which become an

array (a real array, not the arguments pseudoarray) with the rest of the parameters:4

function(url, options, ...callbacks) {
var callback1 = callbacks[0]
var callback2 = callbacks[1]
// ...

}

53Understanding JSX

3.2.5 Creating React component methods

As a developer, you’re free to write any component methods for your applications,

because a React component is a class. For example, you can create a helper method,

getUrl():

class Content extends React.Component {
getUrl() {
return 'http://webapplog.com'

}

(continued)

Rest parameters can be destructured, meaning they can be extracted into separate

variables:

function(url, options, ...[error, success]) {
if (!url) return error(new Error('ooops'))
// ...
success(data)

}

What about spread? In brief, spread allows you to expand arguments or variables in

the following places:

 Function calls—For example, push() method: arr1.push(…arr2)

 Array literals—For example, array2 = [...array1, x, y, z]
 new function calls (constructors)—For example, var d = new Date(...dates)

In ES5, if you wanted to use an array as an argument to a function, you’d have to use

the apply() function:

function request(url, options, callback) {
// ...

}
var requestArgs = ['http://azat.co', {...}, function(){...}]
request.apply(null, requestArgs)

In ES6, you can use the spread parameter, which looks similar to the rest parameter

in syntax and uses ellipses (...):

function request(url, options, callback) {
// ...

}
var requestArgs = ['http://azat.co', {...}, function(){...}]
request(...requestArgs)

The spread operator’s syntax is similar to that of the rest parameter’s, but rest is

used in a function definition/declaration, and spread is used in calls and literals.

They save you from typing extra lines of imperative code, so knowing and using them

is a valuable skill.

54 CHAPTER 3 Introduction to JSX

render() {
...

}
}

The getUrl() method isn’t sophisticated, but you get the idea: you can create your

own arbitrary methods, not just render(). You can use the getUrl() method to

abstract a URL to your API server. Helper methods can have reusable logic, and you

can call them anywhere within other methods of the component, including render().

 If you want to output the return from the custom method in JSX, use {}, just as you

would with variables (see the following listing, ch03/method/jsx/scrch03/meipt.jsx).

In this case, the helper method is invoked in render, and the method’s return values

will be used in the view. Remember to invoke the method with ().

class Content extends React.Component {
getUrl() {
return 'http://webapplog.com'

}
render() {
return (

<div>
<p>Your REST API URL is:

{this.getUrl()}

</p>

</div>
)

}
}
...

Once again, it’s possible to invoke component methods directly from {} and JSX. For

example, using {this.getUrl()} in the helper method getUrl: when you use the

method in listing 3.6, you’ll see http://webapplog.com as its returned value in the

link in the paragraph <p> (see figure 3.2).

 You should now understand component methods. My apologies if you found this

section too banal; these methods are important as a foundation for React event

handlers.

Listing 3.6 Invoking a component method to get a URL

Invokes the class method
in the curly braces

Figure 3.2 Results of

rendering a link with the

value from a method

55Understanding JSX

3.2.6 if/else in JSX

Akin to rendering dynamic variables, developers need to compose their components

so that components can change views based on the results of if/else conditions.

Let’s start with a simple example that renders the elements in a component class; the

elements depend on a condition. For example, some link text and a URL are deter-

mined by the user.session value. This is how you can code this in plain JS:

...
render() {

if (user.session)
return React.createElement('a', {href: '/logout'}, 'Logout')

else
return React.createElement('a', {href: '/login'}, 'Login')

}
...

You can use a similar approach and rewrite this with JSX like so:

...
render() {

if (this.props.user.session)
return Logout

else
return Login

}
...

Let’s say there are other elements, such as a <div> wrapper. In this case, in plain JS,

you’d have to create a variable or use an expression or a ternary operator (also known

as the Elvis operator by the younger generation of JavaScript developers; see

http://mng.bz/92Zg), because you can’t use an if condition inside the <div>’s

createElement(). The idea is that you must get the value at runtime.

Ternary operators

The following ternary condition works such that if userAuth is true, then msg will be

set to welcome. Otherwise, the value will be restricted:

let msg = (userAuth) ? 'welcome' : 'restricted'

This statement is equivalent to the following:

let session = ''
if (userAuth) {

session = 'welcome'
} else {

session = 'restricted'
}

56 CHAPTER 3 Introduction to JSX

To demonstrate the three different styles (variable, expression, and ternary operator),

look at the following regular JavaScript code before it’s converted to JSX:

// Approach 1: Variable
render() {

let link
if (this.props.user.session)
link = React.createElement('a', {href: '/logout'}, 'Logout')

else
link = React.createElement('a', {href: '/login'}, 'Login')

return React.createElement('div', null, link)
}
// Approach 2: Expression
render() {

let link = (sessionFlag) => {
if (sessionFlag)

return React.createElement('a', {href: '/logout'}, 'Logout')
else

return React.createElement('a', {href: '/login'}, 'Login')
}
return React.createElement('div', null, link(this.props.user.session))

}
// Approach 3: Ternary operator
render() {

return React.createElement('div', null,
(this.props.user.session) ? React.createElement('a', {href: '/logout'},

➥ 'Logout') : React.createElement('a', {href: '/login'}, 'Login')
)

}

Not bad, but kind of clunky. Would you agree? With JSX, the {} notation can print

variables and execute JS code. Let’s use it to achieve better syntax:

// Approach 1: Variable
render() {

let link
if (this.props.user.session)
link = Logout

else
link = Login

return <div>{link}</div>

(continued)

In some cases, the ternary (?) operator is a shorter version of if/else. But there’s

a big difference between them if you try to use the ternary operator as an expression

(where it returns a value). This code is valid JS:

let msg = (userAuth) ? 'welcome' : 'restricted'

But if/else won’t work because this isn’t an expression, but a statement:

let msg = if (userAuth) {'welcome'} else {'restricted'} // Not valid

You can use this quality of a ternary operator to get a value from it at runtime in JSX.

Uses a variable link

Creates an expression

Uses a ternary operator

57Understanding JSX

}
// Approach 2: Expression
render() {

let link = (sessionFlag) => {
if (sessionFlag)

return Logout
else

return Login
}
return <div>{link(this.props.user.session)}</div>

}
// Approach 3: Ternary operator
render() {

return <div>
{(this.props.user.session) ? Logout :

➥ Login}
</div>

}

If you look more closely at the expression/function style example (Approach 2: a

function outside the JSX before return), you can come up with an alternative. You can

define the same function using an immediately invoked function expression (IIFE,

http://mng.bz/387u) inside the JSX. This lets you avoid having an extra variable

(such as link) and execute the if/else at runtime:

render() {
return <div>{
(sessionFlag) => {

if (sessionFlag)
return Logout

else
return Login

}(this.props.user.session)
}</div>

}

Furthermore, you can use the same principles for rendering not just entire elements

(<a>, in these examples), but also text and the values of properties. All you need to do

is use one of the approaches shown here, inside curly braces. For example, you can

augment the URL and text and not duplicate the code for element creation. Person-

ally, this is my favorite approach, because I can use a single <a>:

render() {
let sessionFlag = this.props.user.session
return <div>

{(sessionFlag)?'Logout':'Login'}

</div>
}

Defines
an IIFE

Invokes an IIFE
with a parameter

Creates a local variable to store the
session Boolean value, resulting in
less code and better performance

Uses the ternary
operator to render
different URLs based on
the sessionFlag valueUses the ternary operator

to render different text

58 CHAPTER 3 Introduction to JSX

As you can see, unlike in template engines, there’s no special syntax for these condi-

tions in JSX—you just use JavaScript. Most often, you’ll use a ternary operator, because

it’s one of the most compact styles. To summarize, when it comes to implementing

if/else logic in JSX, you can use these options:

 Variable defined outside of JSX (before return) and printed with {} in JSX

 Expression (function that returns a value) defined outside of JSX (before

return) and invoked in {} in JSX

 Conditional ternary operator

 IIFE in JSX

This is my rule of thumb when it comes to conditions and JSX: use if/else outside of

JSX (before return) to generate a variable that you’ll print in JSX with {}. Or, skip the

variable, and print the results of the Elvis operator (?) or expressions using {} in JSX:

class MyReactComponent extends React.Component {
render() {
// Not JSX: Use a variable and if/else or ternary
return (

// JSX: Print result of ternary or expression with {}
)

}
}

We’ve covered the important conditions for building interactive UIs with React and JSX.

Occasionally, you may want to narrate the functionality of your beautiful, intelligent

code so that other people can quickly understand it. To do so, you use comments.

3.2.7 Comments in JSX

Comments in JSX work similar to comments in regular JavaScript. To add JSX com-

ments, you can wrap standard JavaScript comments in {}, like this:

let content = (
<div>
{/* Just like a JS comment */}

</div>
)

Or, you can use comments like this:

let content = (
<div>
<Post

/* I
am
multi
line */
name={window.isLoggedIn ? window.name : ''} // We are inside of JSX

/>
</div>

)

59Setting up a JSX transpiler with Babel

You’ve now had a taste of JSX and its benefits. The rest of this chapter is dedicated to

JSX tools and potential traps to avoid. That’s right: tools and gotchas.

 Because before we can continue, you must understand that for any JSX project to

function properly, the JSX needs to be compiled. Browsers can’t run JSX—they can run

only JavaScript, so you need to take the JSX and transpile it to normal JS (see figure 3.1).

3.3 Setting up a JSX transpiler with Babel

As I mentioned, in order to execute JSX, you need to convert it to regular JavaScript

code. This process is called transpilation (from compilation and transformation), and var-

ious tools are available to do the job. Here are some recommended ways to do this:

 Babel command-line interface (CLI) tool—The babel-cli package provides a com-

mand for transpilation. This approach requires less setup and is the easiest to

start.

 Node.js or browser JavaScript script (API approach)—A script can import the babel-

core package and transpile JSX programmatically (babel.transform). This

allows for low-level control and removes abstractions and dependencies on the

build tools and their plug-ins.

 Build tool—A tool such as Grunt, Gulp, or Webpack can use the Babel plug-in.

This is the most popular approach.5

All of these use Babel in one way or another. Babel is mostly an ES6+/ES2015+ com-

piler, but it also can convert JSX to JavaScript. In fact, the React team stopped develop-

ment on its own JSX transformer and recommends using Babel.

5 Paul O’Shannessy, “Deprecating JSTransform and react-tools,” React, June 12, 2015, http://mng.bz/8yGc.

Can I use something other than Babel 6?

Although there are various tools to transpile JSX, the most frequently used tool—

and the one recommended by the React team on the official React website, as of

August 2016—is Babel (formerly, 5to6). Historically, the React team maintained

react-tools and JSXTransformer (transpilation in the browser); but, since ver-

sion 0.13, the team has recommended Babel and stopped evolving react-tools
and JSXTransformer.5

For in-browser runtime transpilation, Babel version 5.x has browser.js, which is a

ready-to-use distribution. You can drop it in the browser, like JSXTransformer, and it

will convert any <script> code into JS (use type="text/babel"). The latest Babel

version that has browser.js is 5.8.34, and you can include it from the CDN directly

(https://cdnjs.com/libraries/babel-core/5.8.34).

Babel 6.x switched to not having default presets/configs (such as JSX) and removed

browser.js. The Babel team encourages developers to create their own distributions

or use the Babel API. There’s also a babel-standalone library

(https://github.com/Daniel15/babel-standalone), but you still have to tell it which

presets/configs to use.

60 CHAPTER 3 Introduction to JSX

By using Babel for React, you can get extra ES6/ES2015 features to streamline your

development just by adding an extra configuration and a module for ES6. The sixth

iteration of the ECMAScript standard has a myriad of improvements, and is mostly

available as of this writing in all modern browsers. But, older browsers will have a hard

time interpreting the new ES6 code. Also, if you want to use ES7, ES8, or ES27, then

some browsers might not have all the features implemented yet.6

 To solve the lag in ES6 or ES.Next (collective name for the most cutting-edge fea-

tures) implementation by browsers, Babel comes to the rescue. It offers support for

the next generation of JavaScript languages (many languages … get the hint from the

name?). This section covers the recommended approach used in the next few chap-

ters—the Babel CLI—because it involves minimal setup and doesn’t require knowl-

edge of Babel’s API (unlike the API approach).

 To use the Babel CLI (http://babeljs.io), you need Node v6.2.0, npm v3.8.9,

babel-cli v6.9.0 (www.npmjs.com/package/babel-cli), and babel-preset-react

v6.5.0 (www.npmjs.com/package/babel-preset-react). Other versions aren’t guaran-

teed to work with this book’s code, due to the fast-changing nature of Node and React

development.

 If you need to install Node and npm, the easiest way to do so is to download the

installer (just one for both Node and npm) from the official website:

http://nodejs.org. For more options and detailed installation instructions regarding

Babel installation, please see appendix A.

 If you think you have these tools installed, or you’re not sure, check the versions of

Node and npm with these shell/terminal/command prompt commands:

node -v
npm -v

6 www.typescriptlang.org/docs/handbook/jsx.html.

(continued)

Traceur (https://github.com/google/traceur-compiler) is another tool that you can

use as a replacement for Babel.

Finally, TypeScript (www.typescriptlang.org) seems to support JSX compilation via

jsx-typescript (https://github.com/fdecampredon/jsx-typescript),6 but that’s a

whole new toolchain and language (a superset of regular JavaScript).

You probably can use the JSXTransformer, Babel v5, babel-standalone, TypeScript,

and Traceur tools with the examples in this book (I use React v15). TypeScript and

Traceur should be relatively safe bets, because they’re supported as of the time of

this writing. But if you end up using anything other than Babel 6 for the book’s exam-

ples, you do so at your own risk. Manning’s tech reviewers and I didn’t test the code

in this book to see if it works with these tools!

61Setting up a JSX transpiler with Babel

You need to have the Babel CLI and React preset locally. Using the Babel CLI globally

(-g, when installing with npm) is discouraged, because you might run into conflict

when your projects rely on different versions of the tool. Here’s a short version of the

instructions found in appendix A:

1 Create a new folder, such as ch03/babel-jsx-test.

2 Create a package.json file in the new folder and enter an empty object {} in it,

or use npm init to generate the file.

3 Define your Babel presets in package.json (used in this book and explained in

the next section) or .babelrc (not used in this book).

4 Optionally, fill package.json with information such as the project name, license,

GitHub repository, and so on.

5 Install the Babel CLI and React preset locally, using npm i babel-cli@6.9.0

babel-preset-react@6.5.0 --save-dev to save these dependencies in dev-

Dependencies in package.json.

6 Optionally, create an npm script with one of the Babel commands described

shortly.

To repeat what’s written in appendix A, you need a package.json file with at least this

preset:

Babel ES6 preset

In the unfortunate event that you have to support an older browser such as IE9, but

you still want to write in ES6+/ES2015+ because that’s the future standard, you can

add the babel-preset-es2015 (www.npmjs.com/package/babel-preset-es2015)

transpiler. It will convert your ES6 into ES5 code. To do so, install the library:

npm i babel-preset-es2015 --save-dev

Then, add it to the presets configuration next to react:

{
"presets": ["react", "es2015"]

}

I don’t recommend using this ES2015 transpiler if you don’t have to support older

browsers, for several reasons. First, you’ll be running old ES5 code, which is less

optimized than ES6 code. Second, you’re adding an additional dependency and more

complexity. And third, if most people continue to run ES5 code in their browser, why

did we—meaning browser teams and regular JavaScript developers—bother with

ES6? You could use TypeScript (www.typescriptlang.org), ClojureScript (http://

clojurescript.org), or CoffeeScript (http://coffeescript.org), which give you more bang

for your buck!

62 CHAPTER 3 Introduction to JSX

{
...
"babel": {
"presets": ["react"]

},
...

}

Then, running this command (from your newly created project folder) to check the

version should work:

$./node_modules/.bin/babel --version

After installation, issue a command to process your js/script.jsx JSX into js/script.js

JavaScript:

$./node_modules/.bin/babel js/script.jsx -o js/script.js

This command is long because you’re using a path to Babel. You can store this com-

mand in a package.json file to use a shorter version: npm run build. Open the file with

your editor, and add this line to scripts:

"build": "./node_modules/.bin/babel js/script.jsx -o js/script.js"

You can automate this command with the watch option (-w or --watch):

$./node_modules/.bin/babel js/script.jsx -o js/script.js -w

The Babel command watches for any changes in script.jsx and compiles it to script.js

when you save the updated JSX. When this happens, the terminal/command prompt

will display the following:

change js/script.jsx

As you accumulate more JSX files, use the command with -d (--out-dir) and folder

names to compile JSX source files (source) into many regular JS files (build):

$./node_modules/.bin/babel source --d build

Often, having a single file to load is better for the performance of a front-end app

than loading many files. This is because each request adds a delay. You can compile all

the files in the source directory into a single regular JS file with -o (--out-file):

$./node_modules/.bin/babel src -o script-compiled.js

Depending on the path configuration on your computer, you may be able to run

babel instead of ./node_modules/.bin/babel. In both cases, you’re executing locally.

If you have an older babel-cli installed globally, delete it with npm rm -g babel-cli.

 If you’re unable to run babel when you install babel-cli locally in your project,

then consider adding either one of these path statements into your shell profile:

63React and JSX gotchas

~/.bash_profile, ~/.bashrc, or ~/.zsh, depending on your shell (bash, zsh, and so

on) if you’re on POSIX (Unix, Linux, macOS, and the like).

 This shell statement will add a path—so you can launch locally installed npm CLI

packages without typing the path—if there’s ./node_modules/.bin in the current

folder:

if [-d "$PWD/node_modules/.bin"]; then
PATH="$PWD/node_modules/.bin"

fi

The shell script checks whether there’s a ./node_modules/.bin folder in your termi-

nal bash environment current folder, and then adds that folder to the path to enable

npm CLI tools like Babel, Webpack, and so on by name: babel, webpack, and so on.

 You can opt to have the path set all the time, not just when there’s a subfolder. This

shell statement will always add the path ./node_modules/.bin to your PATH environ-

ment variable (also in profile):

export PATH="./node_modules/.bin:$PATH"

Bonus: This setting will also allow you to run any npm CLI tool locally with just its name,

not the path and the name.

TIP For working examples of Babel package.json configurations, open the
projects in the ch03 folder in the source code accompanying this book. They
follow the same approach used in the chapters that follow. The package.json
file in ch03 has npm build scripts for each project (subfolder) that needs
compilation, unless the project has its own package.json.

When you run a build script—for example, npm run build-hello-world—it’ll compile

the JSX from ch03/PROJECT_NAME/jsx into regular JavaScript and put that compiled

file into ch03/PROJECT_NAME/js. Therefore, all you need to do is install the necessary

dependencies with npm i (it will create a ch03/node_modules folder), check whether

a build script exists in package.json, and then run npm run build-PROJECT_NAME.

 Thus far, you’ve learned the easiest way to transpile JSX into regular JS, in my hum-

ble opinion. But I want you to be aware of some tricky parts when it comes to React

and JSX.

3.4 React and JSX gotchas

This section covers some edge cases. There are a few gotchas to be aware of when you

use JSX.

 For instance, JSX requires you to have a closing slash (/) either in the closing tag

or, if you don’t have any children and use a single tag, in the end of that single tag. For

example, this is correct:

Azat, the master of callbacks
<button label="Save" className="btn" onClick={this.handleSave}/>

64 CHAPTER 3 Introduction to JSX

This is not correct, because the slashes are missing:

Azat<a>
<button label="Save" className="btn" onClick={this.handleSave}>

Conversely, HTML is more fault tolerant. Most browsers will ignore the missing slash

and render the element just fine without it. Go ahead: try <button>Press me for

yourself!

 There are other differences between HTML and JSX, as well.

3.4.1 Special characters

HTML entities are codes that display special characters such as copyright symbols, em

dashes, quotation marks, and so on. Here are some examples:

©
—
“

You can render those codes as any string in or in the string attribute <input>.

For example, this is static JSX (text defined in code without variables or properties):

©—“
<input value="©—“"/>

But if you want to dynamically output HTML entities (from a variable or a property)

with , all you’ll get is the direct output (©—“), not the spe-

cial characters. Thus, the following code won’t work:

// Anti-pattern. Will NOT work!
var specialChars = '©—“'

{specialChars}
<input value={specialChars}/>

React/JSX will auto-escape the dangerous HTML, which is convenient in terms of secu-

rity (security by default rocks!). To output special characters, you need to use one of

these approaches:

 Break them into multiple strings by outputting an array; for example,

{[©—“]}. You can also set

key, as in key="specialChars", to suppress a warning about the missing key.

 Copy the special character directly into your source code (make sure you use a

UTF-8 character set).

 Escape the special character with \u, and use a unicode number (search

www.fileformat.info/info/unicode/char/search.htm, if you don’t remember it;

who does?).

65React and JSX gotchas

 Convert from a character code to a character number with String

.fromCharCode(charCodeNumber).

 Use the internal method __html to dangerously set inner HTML (http://

mng.bz/TplO; not recommended).

To illustrate the last approach (as a last resort—when all else fails on the Titanic, run

for the boats!), look at this code:

var specialChars = {__html: '©—“'}

Obviously, the React team has a sense of humor, to name a property

dangerouslySetInnerHTML. Sometimes React naming makes me laugh to myself!

3.4.2 data- attributes

Section 2.3 covered properties in a non-JSX way, but let’s look at how to create custom

attributes in HTML one more time (this time with JSX). Chiefly, React will blissfully

ignore any nonstandard HTML attributes that you add to components. It doesn’t mat-

ter whether you use JSX or native JavaScript—that’s React’s behavior.

 But sometimes, you want to pass additional data using DOM nodes. This is an anti-

pattern because your DOM shouldn’t be used as a database or local storage. If you still

want to create custom attributes and get them rendered, use the data- prefix.

 For example, this is a valid custom data-object-id attribute that React will render

in the view (HTML will be the same as this JSX):

<li data-object-id="097F4E4F">...

If the input is the following React/JSX element, React won’t render object-id,

because it’s not a standard HTML attribute (HTML will miss object-id, unlike this

JSX):

<li object-id="097F4E4F">...

3.4.3 style attribute

The style attribute in JSX works differently than in plain HTML. With JSX, instead of

a string, you need to pass a JavaScript object, and CSS properties need to be in camel-

Case. For example:

 background-image becomes backgroundImage.

 font-size becomes fontSize.

 font-family becomes fontFamily.

You can save the JavaScript object in a variable or render it inline with double curly

braces ({{...}}). The double braces are needed because one set is for JSX and the

other is for the JavaScript object literal.

66 CHAPTER 3 Introduction to JSX

 Suppose you have an object with this font size:

let smallFontSize = {fontSize: '10pt'}

In your JSX, you can use the smallFontSize object:

<input style={smallFontSize} />

Or you can settle for a larger font (30 point) by passing the values directly without an

extra variable:

<input style={{fontSize: '30pt'}} />

Let’s look at another example of passing styles directly. This time, you’re setting a red

border on :

<span style={{borderColor: 'red',
borderWidth: 1,
borderStyle: 'solid'}}>Hey

Alternatively, the following border value will also work:

Hey

The main reason classes are not opaque strings but JavaScript objects is so React can

work with them more quickly when it applies changes to views.

3.4.4 class and for

React and JSX accept any attribute that’s a standard HTML attribute, except class and

for. Those names are reserved words in JavaScript/ECMAScript, and JSX is converted

into regular JavaScript. Use className and htmlFor instead. For example, if you have

a class hidden, you can define it in a <div> this way:

<div className="hidden">...</div>

If you need to create a label for a form element, use htmlFor:

<div>
<input type="radio" name={this.props.name} id={this.props.id}>
</input>
<label htmlFor={this.props.id}>

{this.props.label}
</label>

</div>

3.4.5 Boolean attribute values

Last but not least, some attributes (such as disabled, required, checked, autofocus,

and readOnly) are specific only to form elements. The most important thing to

67Quiz

remember here is that the attribute value must be set in the JavaScript expression (that

is, inside {}) and not set in strings.

 For example, use {false} to enable the input:

<input disabled={false} />

But don’t use a "false" value, because it’ll pass the truthy check (a non-empty string

is truthy in JavaScript—see the sidebar) and render the input as disabled (disabled

will be true):

<input disabled="false" />

If you omit the value, React will assume the value is true:

<input disabled />

The subsequent chapters use JSX exclusively. But knowing the underlying regular

JavaScript that will be run by browsers is a great skill to have in your toolbox.

3.5 Quiz

1 To output a JavaScript variable in JSX, which of the following do you use? =, <%=

%>, {}, or <?= ?>

2 The class attribute isn’t allowed in JSX. True or false?

3 The default value for an attribute without a value is false. True or false?

4 The inline style attribute in JSX is a JavaScript object and not a string like other

attributes. True or false?

5 If you need to have if/else logic in JSX, you can use it inside {}. For example,

class={if (!this.props.admin) return 'hide'} is valid JSX code. True or

false?

Truthiness

In JavaScript/Node, a truthy value translates to true when evaluated as a Boolean;

for example, in an if statement. The value is truthy if it’s not falsy. (That’s the official

definition. Brilliant, right?) And there are only six falsy values:

 false

 0

 "" (empty string)

 null

 Undefined

 NaN (not a number)

I hope you can see that the string "false" is a non-empty string, which is truthy and

translates to true. Hence, you’ll get disabled=true in HTML.

68 CHAPTER 3 Introduction to JSX

3.6 Summary

 JSX is just syntactic sugar for React methods like createElement.

 You should use className and htmlFor instead of the standard HTML class

and for attributes.

 The style attribute takes a JavaScript object, not a string like normal HTML.

 Ternary operators and IIFE are the best ways to implement if/else statements.

 Outputting variables, comments, and HTML entities, and compiling JSX code

into native JavaScript are easy.

 There are a few choices to turn JSX into regular JavaScript; compiling with the

Babel CLI requires minimal setup compared to configuring build processing

with a tool like Gulp or Webpack or writing Node/JavaScript scripts to use the

Babel API.

3.7 Quiz answers

1You use {} for variables and expressions.

2True. class is a reserved or special JavaScript statement. For this reason, you use

className in JSX.

3False. It’s recommended that you use attribute_name={false/true} to set the

Boolean values explicitly.

4True. style is an object for performance reasons.

5False. First, class isn’t a proper attribute. Then, instead of if return (not valid),

you should use a ternary operator.

69

Making React
 interactive with states

If you read only one chapter in this book, this should be it! Without states, your React com-

ponents are just glorified static templates. I hope you’re as excited as I am, because

understanding the concepts in this chapter will allow you to build much more

interesting applications.

 Imagine that you’re building an autocomplete input field (see figure 4.1).

When you type in it, you want to make a request to the server to fetch information

about matches to show on the web page. So far, you’ve worked with properties, and

you’ve learned that by changing properties, you can get different views. But proper-

ties can’t change in the context of the current component, because they’re passed

on this component’s creation.

This chapter covers

 Understanding React component states

 Working with states

 States versus properties

 Stateful versus stateless components

Watch this chapter’s introduction video by

scanning this QR code with your phone or going

to http://reactquickly.co/videos/ch04.

70 CHAPTER 4 Making React interactive with states

To put it another way, properties are immutable in the current component, meaning

you don’t change properties in this component unless you re-create the component

by passing new values from a parent (figure 4.2). But you must store the information

you receive from the server somewhere and then display the new list of matches in the

view. How do you update the view if the properties are unchangeable?

 One solution is to render an element with new properties each time you get the new

server response. But then you’ll have to have logic outside the component—the com-

ponent stops being self-contained. Clearly, if you can’t change the values of properties,

and the autocomplete needs to be self-contained, you can’t use properties. Thus the

Figure 4.1

The react-autocomplete

component in action

A mutable data type is
needed to update the
view for new events.

Events

componentA (parent) componentB View: render()

props this.props

?

Figure 4.2 We need another data type that’s mutable in the component to make the view change.

71What are React component states?

question is, how do you update views in response to events without re-creating a com-

ponent (createElement() or JSX <NAME/>)? This is the problem that states solve.

 Once the response from the server is ready, your callback code will augment the

component state accordingly. You’ll have to write this code yourself. Once the state is

updated, though, React will intelligently update the view for you (only in the places

where it needs to be updated; that’s where you use the state data).

 With React component states, you can build meaningful, interactive React applica-

tions. State is the core concept that lets you build React components that can store

data and automagically augment views based on data changes.

NOTE The source code for the examples in this chapter is at www.manning
.com/books/react-quickly and at https://github.com/azat-co/react-quickly/
tree/master/ch04 (in the ch04 folder of the GitHub repository https://
github.com/azat-co/react-quickly). You can also find some demos at http://
reactquickly.co/demos.

4.1 What are React component states?

A React state is a mutable data store of components—self-contained, functionality-

centric blocks of UI and logic. Mutable means state values can change. By using state in

a view (render()) and changing values later, you can affect the view’s representation.

 Here’s a metaphor: if you think of a component as a function that has properties

and state as its input, then the result of this function is the UI description (view). Or,

as React teams phrase it, “Components are state machines.” Properties and state both

augment views, but they’re used for different purposes (see section 4.3).

 To work with states, you access them by name. This name is an attribute (a.k.a. an

object key or an object property—not a component property) of the this.state object:

for example, this.state.autocompleMatches or this.state.inputFieldValue.

NOTE Generally speaking, the word states refers to the attributes of the
this.state object in a component. Depending on the context, state (singu-
lar) can refer to the this.state object or an individual attribute (such as
this.state.inputFieldValue). Conversely, states (plural) almost always
refers to the multiple attributes of the state object in a single component.

State data is often used to display dynamic information in a view to augment the ren-

dering of views. Going back to the earlier example of an autocomplete field, the state

changes in response to the XHR request to the server, which is, in turn, triggered by a

user typing in the field. React takes care of keeping views up to date when the state used

in the views changes. In essence, when state changes, only the corresponding parts of views

change (down to single elements or even an attribute value of a single element).

 Everything else in the DOM remains intact. This is possible due to the virtual DOM

(see section 1.1.1), which React uses to determine the delta using the reconciliation

process. This is how you can write declaratively. React does all the magic for you. The

steps in the view change and how it happens are discussed in chapter 5.

72 CHAPTER 4 Making React interactive with states

 React developers use states to generate new UIs. Component properties

(this.props), regular variables (inputValue), and class attributes (this.inputValue)

won’t do it, because they don’t trigger a view change when you alter their values (in the

current component context). For instance, the following is an antipattern, showing

that if you change a value in anything except the state, you won’t get view updates:

// Anti-pattern: Stay away from it!
let inputValue = 'Texas'
class Autocomplete extends React.Component {

updateValues() {
this.props.inputValue = 'California'
inputValue = 'California'
this.inputValue = 'California'

}
render() {
return (

<div>
{this.props.inputValue}
{inputValue}
{this.inputValue}

</div>
)

}
}

Next, you’ll see how to work with React component states.

NOTE As mentioned earlier (repetition is the mother of skills), properties will
change the view if you pass a new value from a parent, which in turn will create
a new instance of the component you’re currently working with. In the context
of a given component, changing properties as in this.props.inputValue =
'California' won’t cut it.

4.2 Working with states

To be able to work with states, you need to know how to access values, update them,

and set the initial values. Let’s start with accessing states in React components.

4.2.1 Accessing states

The state object is an attribute of a component and can be accessed with a this ref-

erence; for example, this.state.name. You’ll recall that you can access and print vari-

ables in JSX with curly braces ({}). Similarly, you can render this.state (like any

other variable or custom component class attribute) in render(); for example,

{this.state.inputFieldValue}. This syntax is similar to the way you access proper-

ties with this.props.name.

 Let’s use what you’ve learned so far to implement a clock, as shown in figure 4.3.

The goal is to have a self-contained component class that anyone can import and use

in their application without having to jump through hoops. The clock must render

the current time.

Triggered as a result of
a user action (typing)

73Working with states

The structure of the clock project is as follows:

/clock
index.html
/jsx
script.jsx
clock.jsx

/js
script.js
clock.js
react.js
react-dom.js

I’m using the Babel CLI with a watch (-w) and a directory flag (-d) to compile all

source JSX files from clock/jsx to a destination folder, clock/js, and recompile on

changes. Moreover, I have the command saved as an npm script in my package.json in

a parent folder, ch04, in order to run npm run build-clock from ch04:

"scripts": {
"build-clock": "./node_modules/.bin/babel clock/jsx -d clock/js -w"

},

Obviously, time is always changing (for good or for bad). Because of that, you’ll need

to update the view—and you can do so by using state. Give it the name currentTime,

and try to render this state as shown in the following listing.

class Clock extends React.Component {
render() {
return <div>{this.state.currentTime}</div>

}
}

ReactDOM.render(
<Clock />,
document.getElementById('content')

)

You’ll get an error: Uncaught TypeError: Cannot read property 'currentTime' of

null. Normally, JavaScript error messages are as helpful as a glass of cold water to a

Listing 4.1 Rendering state in JSX

Figure 4.3 The clock

component shows the

current time in digital format

and is updated every second.

74 CHAPTER 4 Making React interactive with states

drowning man. It’s good that, at least in this case, JavaScript gives you a helpful message.

This one means you don’t have a value for currentTime. Unlike properties, states aren’t

set on a parent. You can’t setState in render() either, because it’ll create a circular

(setState render setState…) loop—and, in this case, React will throw an error.

4.2.2 Setting the initial state

Thus far, you’ve seen that before you use state data in render(), you must initialize

the state. To set the initial state, use this.state in the constructor with your ES6 class

React.Component syntax. Don’t forget to invoke super() with properties; otherwise,

the logic in the parent (React.Component) won’t work:

class MyFancyComponent extends React.Component {
constructor(props) {
super(props)
this.state = {...}

}
render() {
...

}
}

You can also add other logic while you’re setting the initial state. For example, you can

set the value of currentTime using new Date(). You can even use toLocaleString()

to get the proper date and time format for the user’s location, as shown next

(ch04/clock).

class Clock extends React.Component {
constructor(props) {
super(props)
this.state = {currentTime: (new Date()).toLocaleString()}

}
...

}

The value of this.state must be an object. We won’t get into a lot of detail here

about the ES6 constructor(); see appendix E and the ES6 cheatsheet at

https://github.com/azat-co/cheatsheets/tree/master/es6. The gist is that as with

other OOP languages, constructor() is invoked when an instance of this class is cre-

ated. The constructor method name must be exactly constructor. Think of it as an

ES6 convention. Furthermore, if you create a constructor() method, you’ll almost

always need to invoke super() inside it; otherwise, the parent’s constructor won’t be

executed. On the other hand, if you don’t define a constructor() method, then the

call to super() will be assumed under the hood.

Listing 4.2 Clock component constructor

75Working with states

Here, currentTime is an arbitrary name; you’ll need to use the same name later when

accessing and updating this state. You can name the state anything you want, as long

as you refer to it later using this name.

 The state object can have nested objects or arrays. This example adds an array of

my books to the state:

class Content extends React.Component {
constructor(props) {
super(props)
this.state = {

githubName: 'azat-co',
books: [

'pro express.js',
'practical node.js',
'rapid prototyping with js'

]
}

}
render() {
...

}
}

The constructor() method is called just once, when a React element is created from

this class. This way, you can set state directly by using this.state just once, in the

Class attributes

Hopefully, Technical Committee 39 (TC39: the people behind the ECMAScript stan-

dard) will add attributes to the class syntax in future versions of ECMAScript! This

way, we’ll be able to set state not just in the constructor, but also in the body of a

class:

class Clock extends React.Component {
state = {
...

}
}

The proposal for class fields/attributes/properties is at https://github.com/

jeffmo/es-class-fields-and-static-properties. It’s been there for many years, but as of

this writing (March 2017), it’s only a stage 2 proposal (stage 4 means final and in

the standard), meaning it’s not widely available in browsers. That is, this feature

won’t work natively. (As of this writing, exactly zero browsers support class fields.)

Most likely, you’ll have to use a transpiler (such as Babel, Traceur, or TypeScript) to

ensure that the code will work in all browsers. Check out the current compatibility of

class properties in the ECMAScript compatibility table (http://kangax.github.io/

compat-table/esnext), and, if needed, use the ES.Next Babel preset.

76 CHAPTER 4 Making React interactive with states

constructor() method. Avoid setting and updating state directly with this.state = ...

anywhere else, because doing so may lead to unintended consequences.

NOTE With React’s own createClass() method to define a component,
you’ll need to use getInitialState(). For more information on create-
Class() and an example in ES5, see the sidebar in section 2.2, “ES6+/ES2015+
and React.”

This will only get you the first value, which will be outdated very soon—like, in 1 sec-

ond. What’s the point of a clock that doesn’t show the current time? Luckily, there’s a

way to update the state.

4.2.3 Updating states

You change state with the this.setState(data, callback) class method. When this

method is invoked, React merges the data with current states and calls render(). After

that, React calls callback.

 Having the callback in setState() is important because the method works asyn-

chronously. If you’re relying on the new state, you can use the callback to make sure this

new state is available.

 If you rely on a new state without waiting for setState() to finish its work—that is,

working synchronously with an asynchronous operation—then you may have a bug

when you rely on new state values to be updated, but the state is still an old state with

old values.

 So far, you’ve rendered the time from a state. You also set the initial state, but you

need to update the time every second, right? To do so, you can use a browser timer

function, setInterval() (http://mng.bz/P2d6), which will execute the state update

every n milliseconds. The setInterval() method is implemented in virtually all mod-

ern browsers as a global, which means you can use it without any libraries or prefixes.

Here’s an example:

setInterval(()=>{
console.log('Updating time...')
this.setState({
currentTime: (new Date()).toLocaleString()

})
}, 1000)

To kick-start the clock, you need to invoke setInterval() once. Let’s create a

launchClock() method to do just that; you’ll call launchClock() in the constructor.

The final clock is shown in the following listing (ch04/clock/jsx/clock.jsx).

class Clock extends React.Component {
constructor(props) {

super(props)
this.launchClock()

Listing 4.3 Implementing a clock with state

Triggers
launchClock()

77Working with states

this.state = {
currentTime: (new Date()).toLocaleString()

}
}
launchClock() {

setInterval(()=>{
console.log('Updating time...')
this.setState({

currentTime: (new Date()).toLocaleString()
})

}, 1000)
}
render() {

console.log('Rendering Clock...')
return <div>{this.state.currentTime}</div>

}
}

You can use setState() anywhere, not just in launchClock() (which is invoked by

constructor), as shown in the example. Typically, setState() is called from the

event handler or as a callback for incoming data or data updates.

TIP Changing a state value in your code using this.state.name= 'new name'
won’t do any good. This won’t trigger a rerender and a possible real DOM
update, which you want. For the most part, changing state directly without
setState() is an antipattern and should be avoided.

It’s important to note that setState() updates only the states you pass to it (partially

or merged, but not a complete replace). It doesn’t replace the entire state object

each time. So, if you have three states and change one, the other two will remain

unchanged. In the following example, userEmail and userId will remain intact:

constructor(props) {
super(props)
this.state = {
userName: 'Azat Mardan',
userEmail: 'hi@azat.co',
userId: 3967

}
}
updateValues() {

this.setState({userName: 'Azat'})
}

If your intention is to update all three states, you need to do so explicitly by passing

the new values for these states to setState(). (Another method you may still see in

old React code but that’s no longer working and has been deprecated is the

this.replaceState() method.1 As you can guess from the name, it replaced the

entire state object with all its attributes.)

1 https://github.com/facebook/react/issues/3236.

Sets the initial state
to the current time

Updates the
state with the
current time
every second

Renders
the state

78 CHAPTER 4 Making React interactive with states

 Keep in mind that setState() triggers render(). It works in most cases. In some

edge-case scenarios where the code depends on external data, you can trigger a reren-

der with this.forceUpdate(). But this approach should be avoided as a bad practice,

because relying on external data and not state makes components more fragile and

depends on external factors (tight coupling).

 As mentioned earlier, you can access the state object with this.state. As you’ll

recall, you output values with curly braces ({}) in JSX; therefore, to declare a state

property in the view (that is, render’s return statement), apply {this.state.NAME}.

 React magic happens when you use state data in a view (for example, to print, in

an if/else statement, as a value of an attribute, or as a child’s property value) and

then give setState() new values. Boom! React updates the necessary HTML for you.

You can see this in your DevTools console. It should show cycles of “Updating …” and

then “Rendering ….” And the best part is that only the absolute minimum required

DOM elements will be affected.

Binding this in JavaScript

In JavaScript, this mutates (changes) its value depending on the place from which

a function is called. To ensure that this refers to your component class, you need

to bind the function to the proper context (this value: your component class).

If you’re using ES6+/ES2015+, as I do in this book, you can use fat-arrow function

syntax to create a function with autobinding:

setInterval(()=>{
this.setState({
currentTime: (new Date()).toLocaleString()

})
}, 1000)

Autobinding means the function created with a fat arrow gets the current value of

this, which in this case is Clock.

The manual approach uses the bind(this) method on the closure:

function() {...}.bind(this)

It looks like this for your clock:

setInterval(function(){
this.setState({
currentTime: (new Date()).toLocaleString()

})
}.bind(this), 1000)

This behavior isn’t exclusive to React. The this keyword mutates in a function’s clo-

sure, so you need do some sort of binding; you can also save the context (this) value

so you can use it later.

79Working with states

You have a clock, and it’s working, as shown in figure 4.4. Tadaaa!

 One more quick thing before we move on. You can see how React is reusing the

same DOM <div> element and only changes the text inside it. Go ahead and use Dev-

Tools to modify the CSS of this element. I added a style to make the text blue: color:

blue, as shown in figure 4.5 (you can see the color in electronic versions of the book).

I created an inline style, not a class. The element and its new inline style stayed the

same (blue) while the time kept ticking.

 React will only update the inner HTML (the content of the second <div> container).

The <div> itself, as well as all other elements on this page, remain intact. Neat.

(continued)

Typically, you’ll see variables like self, that, and _this used to save the value of

the original this. You’ve probably seen statements like the following:

var that = this
var _this = this
var self = this

The idea is straightforward: you create a variable and use it in the closure instead of

referring to this. The new variable isn’t a copy but rather a reference to the original

this value. Here’s setInterval():

var _this = this
setInterval(function(){

_this.setState({
currentTime: (new Date()).toLocaleString()

})
}, 1000)

Figure 4.4 The Clock is ticking.

80 CHAPTER 4 Making React interactive with states

4.3 States and properties

States and properties are both attributes of a class, meaning they’re this.state and

this.props. That’s the only similarity! One of the primary differences between states

and properties is that the former are mutable, whereas the latter are immutable.

 Another difference between properties and states is that you pass properties from

parent components, whereas you define states in the component itself, not its par-

ent. The philosophy is that you can only change the value of a property from the

parent, not the component. So properties determine the view upon creation, and

then they remain static (they don’t change). The state, on the other hand, is set and

updated by the object.

 Properties and states serve different purposes, but both are accessible as attributes

of the component class, and both help you to compose components with a different

representation (view). There are differences between properties and states when it

comes to the component lifecycle (more in chapter 5). Think of properties and states

as inputs for a function that produces different outputs. Those outputs are views. So

you can have different UIs (views) for each set of different properties and states (see

figure 4.6).

 Not all components need to have state. In the next section, you’ll see how to use

properties with stateless components.

Figure 4.5 React is updating the time’s text, not the <div> element (I manually added color: blue, and the

<div> remained blue).

81Stateless components

4.4 Stateless components

A stateless component has no states or components or any other React lifecycle

events/methods (see chapter 5). The purpose of a stateless component is just to ren-

der the view. The only thing it can do is take properties and do something with

them—it’s a simple function with the input (properties) and the output (UI element).

 The benefit of using stateless components is that they’re predictable, because you

have one input that determines the output. Predictability means they’re easier to

understand, maintain, and debug. In fact, not having a state is the most desired React

practice—the more stateless components you use and the fewer stateful ones you use,

the better.

 You wrote a lot of stateless components in the first three chapters of this book. For

example, Hello World is a stateless component (ch03/hello-js-world-jsx/jsx/script.jsx).

class HelloWorld extends React.Component {
render() {
return <h1 {...this.props}>Hello {this.props.frameworkName} world!!!

➥ </h1>
}

}

To provide a smaller syntax for stateless components, React uses this function style:

you create a function that takes properties as an argument and returns the view. A

stateless component renders like any other component. For example, the HelloWorld

component can be rewritten as a function that returns <h1>:

const HelloWorld = function(props){
return <h1 {...props}>Hello {props.frameworkName} world!!!</h1>

}

Listing 4.4 Stateless Hello World

componentA (parent)

componentB.setState

(data)

componentB View: render()

props

state

this.props

this.state

States are mutable,
defined in each
component.

Figure 4.6 New values for properties and states can change the UI. New property values come from a parent, and

new state values come from the component.

82 CHAPTER 4 Making React interactive with states

You can use ES6+/ES2015+ arrow functions for stateless components. The following

snippet is analogous to the previous one (return can be omitted too, but I like to

include it):

const HelloWorld = (props)=>{
return <h1 {...props}>Hello {props.frameworkName} world!!!</h1>

}

As you can see, you can also define functions as React components when there’s no

need for state. In other words, to create a stateless component, define it as a function.

Here’s an example in which Link is a stateless component:

function Link (props) {
return

➥ {props.text}
}
ReactDOM.render(

<Link text='Buy React Quickly'

➥ href='https://www.manning.com/books/react-quickly'/>,
document.getElementById('content')

)

Although there’s no need for autobinding, you can use the fat-arrow function syntax

for brevity (when there’s a single statement, the notation can be a one-liner):

const Link = props => <a href={props.href}
target="_blank"
className="btn btn-primary">
{props.text}

Or you can use the same arrow function but with curly braces ({}), explicit return,

and parentheses (()) to make it subjectively more readable:

const Link = (props)=> {
return (
<a href={props.href}

target="_blank"
className="btn btn-primary">

{props.text}

)
}

In a stateless component, you can’t have a state, but you can have two properties:

propTypes and defaultProps (see sections 8.1 and 8.2, respectively). You set them on

the object. And, by the way, it’s okay to not have an opening parenthesis after return

as long as you start an element on the same line:

83Stateful vs. stateless components

function Link (props) {
return <a href={props.href}
target="_blank"
className="btn btn-primary">

{props.text}

}
Link.propTypes = {...}
Link.defaultProps = {...}

You also cannot use references (refs) with stateless components (functions).2 If you

need to use refs, you can wrap a stateless component in a normal React component.

More about references in section 7.2.3.

4.5 Stateful vs. stateless components

Why use stateless components? They’re more declarative and work better when all you

need to do is render some HTML without creating a backing instance or lifecycle com-

ponents. Basically, stateless components reduce duplication and provide better syntax

and more simplicity when all you need to do is mesh together some properties and

elements into HTML.

 My suggested approach, and the best practice according to the React team, is to use

stateless components instead of normal components as often as possible. But as you saw

in the clock example, it’s not always possible; sometimes you have to resort to using states.

So, you have a handful of stateful components on top of the hierarchy to handle the UI

states, interactions, and other application logic (such as loading data from a server).

 Don’t think that stateless components must be static. By providing different properties

for them, you can change their representation. Let’s look at an example that refactors and

enhances Clock into three components: a stateful clock that has the state and the logic to

update it; and two stateless components, DigitalDisplay and AnalogDisplay, which only

output time (but do it in different ways). The goal is something like figure 4.7. Pretty, right?

 The structure of the project is as follows:

/clock-analog-digital
/jsx
analog-display.jsx
clock.jsx
digital-display.jsx
script.jsx

/js
analog-display.js
clock.js
digital-display.js
script.js
react.js
react-dom.js

index.html

2 “React stateless component this.refs..value?” http://mng.bz/Eb91.

84 CHAPTER 4 Making React interactive with states

The code for Clock renders the two child elements and passes the time property with

the value of the currentTime state. The state of a parent becomes a property of a

child.

...
render() {
console.log('Rendering...')
return <div>

<AnalogDisplay time={this.state.currentTime}/>
<DigitalDisplay time={this.state.currentTime}/>

</div>
}

Now, you need to create DigitalDisplay, which is simple. It’s a function that takes the

properties and displays time from that property argument (props.time), as shown

next (ch04/clock-analog-digital/jsx/digital-display.jsx).

const DigitalDisplay = function(props) {
return <div>{props.time}</div>

}

AnalogDisplay is also a function that implements a stateless component; but in its

body is some fancy animation to rotate the hands. The animation works based on the

time property, not based on any state. The idea is to take the time as a string; convert

Listing 4.5 Passing state to children

Listing 4.6 Stateless digital display component

Figure 4.7 Clock with two ways to show time: analog and digital

85Stateful vs. stateless components

it to a Date object; get minutes, hours, and seconds; and convert those to degrees. For

example, here’s how to get seconds as angle degrees:

let date = new Date('1/9/2007, 9:46:15 AM')
console.log((date.getSeconds()/60)*360) // 90

Once you have the degrees, you can use them in CSS, written as an object literal. The

difference is that in the React CSS, the style properties are camelCased, whereas in

regular CSS, the dashes (-) make style properties invalid JavaScript. As mentioned

earlier, having objects for styles allows React to more quickly determine the differ-

ence between the old element and the new element. See section 3.4.3. for more

about style and CSS in React.

 The following listing shows the stateless analog display component with CSS that

uses values from the time property (ch04/clock-analog-digital/jsx/analog-display.jsx).

const AnalogDisplay = function AnalogDisplay(props) {
let date = new Date(props.time)
let dialStyle = {
position: 'relative',
top: 0,
left: 0,
width: 200,
height: 200,
borderRadius: 20000,
borderStyle: 'solid',
borderColor: 'black'

}
let secondHandStyle = {
position: 'relative',
top: 100,
left: 100,
border: '1px solid red',
width: '40%',
height: 1,
transform: 'rotate(' + ((date.getSeconds()/60)*360 - 90)

➥ .toString() + 'deg)',
transformOrigin: '0% 0%',
backgroundColor: 'red'

}
let minuteHandStyle = {
position: 'relative',
top: 100,
left: 100,
border: '1px solid grey',
width: '40%',
height: 3,
transform: 'rotate(' + ((date.getMinutes()/60)*360 - 90)

➥ .toString() + 'deg)',

Listing 4.7 Stateless analog display component

Converts the string date
into an object so you can
parse it later

Uses borderRadius (border-radius in
regular CSS) on a <div> with a high
number relative to the width, to make
it a circle

Calculates the angle and rotates the
second hand with minus 90 to offset for
the hand’s starting horizontal position

Uses transformOrigin to offset
the center of the rotation

86 CHAPTER 4 Making React interactive with states

transformOrigin: '0% 0%',
backgroundColor: 'grey'

}
let hourHandStyle = {
position: 'relative',
top: 92,
left: 106,
border: '1px solid grey',
width: '20%',
height: 7,
transform: 'rotate(' + ((date.getHours()/12)*360 - 90).toString() + 'deg)',
transformOrigin: '0% 0%',
backgroundColor: 'grey'

}
return <div>
<div style={dialStyle}>

<div style={secondHandStyle}/>
<div style={minuteHandStyle}/>
<div style={hourHandStyle}/>

</div>
</div>

}

If you have React Developer Tools for Chrome or Firefox (available at http://

mng.bz/mt5P and http://mng.bz/DANq), you can open the React pane in your

DevTools (or an analog in Firefox). Mine shows that the <Clock> element has two

children (see figure 4.8). Notice that React DevTools tells you the names of the

components along with the state, currentTime. What a great tool for debugging!

Renders the containers with
applicable styles relative to
the clock dial (large circle)

Figure 4.8 React DevTools v0.15.4 shows two components.

87Stateful vs. stateless components

Note that in this example, I used anonymous expressions stored as const variables.

Another approach is to use a syntax with named function declarations:

function AnalogDisplay(props) {...}

Or you can use the named function declaration referenced from a variable:

const AnalogDisplay = function AnalogDisplay(props) {...}

As you can see, the AnalogDisplay and DigitalDisplay components are stateless:

they have no states. They also don’t have any methods, except for the body of the

function, which is not like render() in a normal React class definition. All the logic

and states of the app are in Clock.

 In contrast, the only logic you put into the stateless components is the animation,

but that’s closely related to the analog display. Clearly, it would have been a bad design

to include analog animation in Clock. Now, you have two components, and you can

About function declarations in JavaScript

In JavaScript, there are several way to define a function. You can write an anonymous

function expression that’s used right away (typically as a callback):

function() { return 'howdy'}

Or you can create an IIFE:

(function() {
return('howdy')

})()

An anonymous function expression can be referenced in a variable:

let sayHelloInMandarin = function() { return 'ni hao'}

This is a named or hoisted function expression:

function sayHelloInTatar() { return 'sälam'}

And this is a named or hoisted function expression referenced in a variable:

let sayHelloInSpanish = function digaHolaEnEspanol() { return 'hola'}

Finally, you can use an immediately invoked, named function expression:

(function sayHelloInTexan() {
return('howdy')

})()

There’s no fat-arrow syntax for named/hoisted functions.

ˇ̌ ˇ̌

88 CHAPTER 4 Making React interactive with states

render either or both of them from Clock. Using stateless components properly with a

handful of stateful components allows for more flexible, simpler, better design.

 Usually, when React developers say stateless, they mean a component created with a

function or fat-arrow syntax. It’s possible to have a stateless component created with a

class, but this approach isn’t recommended because then it’s too easy for someone

else (or you in six months) to add a state. No temptation, no way to complicate code!

 You may be wondering whether a stateless component can have methods. Obvi-

ously, if you use classes, then yes, they can have methods; but as I mentioned, most

developers use functions. Although you can attach methods to functions (they’re also

objects in JavaScript), the code isn’t elegant, because you can’t use this in a function

(the value isn’t the component; it’s window):

// Anti-pattern: Don't do this.
const DigitalDisplay = function(props) {

return <div>{DigitalDisplay.locale(props.time)}</div>
}
DigitalDisplay.locale = (time)=>{

return (new Date(time)).toLocaleString('EU')
}

If you need to perform some logic related to the view, create a new function right in

the stateless component:

// Good pattern
const DigitalDisplay = function(props) {

const locale = time => (new Date(time)).toLocaleString('EU')
return <div>{locale(props.time)}</div>

}

Keep your stateless components simple: no states and no methods. In particular, don’t

have any calls to external methods or functions, because their results may break pre-

dictability (and violate the concept of purity).

4.6 Quiz

1 You can set state in a component method (not a constructor) with which syn-

tax? this.setState(a), this.state = a, or this.a = a

2 If you want to update the render process, it’s normal practice to change proper-

ties in components like this: this.props.a=100. True or false?

3 States are mutable, and properties are immutable. True or false?

4 Stateless components can be implemented as functions. True or false?

5 How do you define the first state variables when an element is created?

setState(), initialState(), this.state =... in the constructor, or

setInitialState()

89Quiz answers

4.7 Summary

 States are mutable; properties are immutable.

 getInitialState allows components to have an initial state object.

 this.setState updates only the properties you pass to it, not all state object

properties.

 {} is a way to render variables and execute JavaScript in JSX code.

 this.state.NAME is the way to access state variables.

 Stateless components are the preferred way of working with React.

4.8 Quiz answers

1this.setState(a), because we never, never, never assign this.state directly

except in constructor(). this.a will not do anything with state. It’ll only create

an instance field/attribute/property.

2False. Changing a property in the component won’t trigger a rerender.

3True. There’s no way to change a property from a component—only from its par-

ent. Conversely, states are changed only by the component.

4True. You can use the arrow function or the traditional function() {} definition,

but both must return an element (single element).

5this.state = ... in the constructor, or getInitialState() if you’re using

createClass().

90

React component
 lifecycle events

Chapter 2 provided information about how to create components, but there are

certain situations in which you need more granular control over a component. For

instance, you may be building a custom radio button component that can change

in size depending on the screen width. Or perhaps you’re building a menu that

needs to get information from the server by sending an XHR request.

 One approach would be to implement the necessary logic before instantiating a

component and then re-create it by providing different properties. Unfortunately,

this won’t create a self-contained component, and thus you’ll lose React’s benefit of

providing a component-based architecture.

This chapter covers

 Getting a bird’s-eye view of React component lifecycle

events

 Understanding event categories

 Defining an event

 Mounting, updating, and unmounting events

Watch this chapter’s introduction video by

scanning this QR code with your phone or going

to http://reactquickly.co/videos/ch05.

91Categories of events

 The best approach is to use component lifecycle events. By mounting events, you

can inject the necessary logic into components. Moreover, you can use other events to

make components smarter by providing specific logic about whether or not to reren-

der their views (overwriting React’s default algorithm).

 Going back to the examples of a custom radio button and menu, the button can

attach event listeners to window (onResize) when the button component is created,

and detach them when the component is removed. And the menu can fetch data from

the server when the React element is mounted (inserted) into the real DOM.

 Onward to learning about component lifecycle events!

NOTE The source code for the examples in this chapter is at www.manning
.com/books/react-quickly and https://github.com/azat-co/react-quickly/
tree/master/ch05 (in the ch05 folder of the GitHub repository https://
github.com/azat-co/react-quickly). You can also find some demos at http://
reactquickly.co/demos.

5.1 A bird’s-eye view of React component lifecycle events

React provides a way for you to control and customize a component’s behavior based

on its lifecycle events (think of hooking [https://en.wikipedia.org/wiki/Hooking] in

computer programming). These events belong to the following categories:

 Mounting events—Happen when a React element (an instance of a component

class) is attached to a DOM node

 Updating events—Happen when a React element is updated as a result of new

values of its properties or state

 Unmounting events—Happen when a React element is detached from the DOM

Each and every React component has lifecycle events that are triggered at certain

moments depending on what a component has done or will do. Some of them exe-

cute just once, whereas others can be executed continuously.

 Lifecycle events allow you to implement custom logic that will enhance what com-

ponents can do. You can also use them to modify the behavior of components: for

example, to decide when to rerender. This enhances performance, because unneces-

sary operations are eliminated. Another usage is to fetch data from the back end or

integrate with DOM events or other front-end libraries. Let’s look more closely at how

categories of events operate, what events they possess, and in what sequence those

events are executed.

5.2 Categories of events

React defines several component events in three categories (see figure 5.1 and also

table 5.1, later in the chapter). Each category can fire events various number of times:

 Mounting—React invokes events only once.

 Updating—React can invoke events many times.

 Unmounting—React invokes events only once.

92 CHAPTER 5 React component lifecycle events

In addition to lifecycle events, I’ll include constructor(), to illustrate the order of

execution from start to finish during the component’s lifecycle (updating can happen

multiple times):

 constructor()—Happens when an element is created and lets you set the

default properties (chapter 2) and the initial state (chapter 4)

 Mounting

– componentWillMount()—Happens before mounting to the DOM

– componentDidMount()—Happens after mounting and rendering

 Updating

– componentWillReceiveProps(nextProps)—Happens when the component

is about to receive properties

– shouldComponentUpdate(nextProps, nextState)-> bool—Lets you opti-

mize the component’s rerendering by determining when to update and

when to not update

– componentWillUpdate(nextProps, nextState)—Happens right before the

component is updated

– componentDidUpdate(prevProps, prevState)—Happens right after the

component updated

 Unmounting

– componentWillUnmount function()—Lets you unbind and detach any event

listeners or do other cleanup work before the component is unmounted

Usually, an event’s name makes clear to developers when the event is triggered. For

example, componentDidUpdate() is fired when the component is updated. In other

cases, there are subtle differences. Table 5.1 shows the sequence of lifecycle events (from

top to bottom) and how some of them depend on changes of properties or state (the

Component Properties and Component State columns).

Mounting UnmountingUpdating

Component lifecycle

Events executed
once

Events executed
multiple times

Events executed
once

Figure 5.1 Categories of lifecycle events as a component proceeds through its lifecycle,

and how many times events in a category can be called

93Categories of events

T
a
b
le

 5
.1

L
if
e
c
y
c
le

 e
v
e
n
ts

 (
a
n
d
 t

h
e
ir

 r
e
la

ti
o
n
 w

it
h
 s

ta
te

 a
n
d
 p

ro
p
e
rt

ie
s
)

M
o
u
n
ti

n
g

U
p
d
a
ti

n
g
 c

o
m

p
o
n
e
n
t

p
ro

p
e
rt

ie
s

U
p
d
a
ti

n
g
 c

o
m

p
o
n
e
n
t

s
ta

te
U

p
d
a
ti

n
g
 u

s
in

g

f
o
r
c
e
U
p
d
a
t
e
(
)

U
n
m

o
u
n
ti

n
g

c
o
n
s
t
r
u
c
t
o
r
(
)

c
o
m
p
o
n
e
n
t
W
i
l
l
M
o
u
n
t
(
)

c
o
m
p
o
n
e
n
t
W
i
l
l
R
e
c
e
i
v
e
P
r
o
p
s
(
)

s
h
o
u
l
d
C
o
m
p
o
n
e
n
t
U
p
d
a
t
e
(
)

s
h
o
u
l
d
C
o
m
p
o
n
e
n
t
U
p
d
a
t
e
(
)

c
o
m
p
o
n
e
n
t
W
i
l
l
U
p
d
a
t
e
(
)

c
o
m
p
o
n
e
n
t
W
i
l
l
U
p
d
a
t
e
(
)

c
o
m
p
o
n
e
n
t
W
i
l
l
U
p
d
a
t
e
(
)

r
e
n
d
e
r
(
)

r
e
n
d
e
r
(
)

r
e
n
d
e
r
(
)

r
e
n
d
e
r
(
)

c
o
m
p
o
n
e
n
t
D
i
d
U
p
d
a
t
e
(
)

c
o
m
p
o
n
e
n
t
D
i
d
U
p
d
a
t
e
(
)

c
o
m
p
o
n
e
n
t
D
i
d
U
p
d
a
t
e
(
)

c
o
m
p
o
n
e
n
t
D
i
d
M
o
u
n
t
(
)

c
o
m
p
o
n
e
n
t
W
i
l
l
U
n
m
o
u
n
t
(
)

94 CHAPTER 5 React component lifecycle events

There’s one more case in which a component might be rerendered: when

this.forceUpdate() is called. As you can guess from the name, it forces updates. You

may need to resort to using it when, for one reason or another, updating state or prop-

erties won’t trigger a desired rerender. For example, this might happen when you use

data in render() that isn’t part of the state or properties, and that data changes—

hence, the need to manually trigger an update. Generally (and according to the React

core team), the this.forceUpdate() method (http://mng.bz/v5sU) should be

avoided, because it makes components impure (see the following sidebar).

 Next, let’s define an event to see it in action.

Pure functions

In computer science in general—not just in React—a pure function is a function that

 Given the same input, will always return the same output

 Has no side effects (doesn’t alter external states)

 Doesn’t rely on any external state

For example, here’s a pure function that doubles the value of the input: f(x) = 2x or,

in JavaScript/Node, let f= (n)2*n. Here it is in action:

let f = (n)=>2*n
consoleg.log(f(7))

An impure function to double numbers looks like this in action (adding curly braces

removes the implicit return of the one-liner fat-arrow function):

let sharedStateNumber = 7
let double
let f = ()=> {double =2*sharedStateNumber}
f()
console.log(double)

Pure functions are the cornerstone of functional programming (FP), which minimizes

state as much as possible. Developers (especially functional programmers) prefer

pure functions primarily because their usage mitigates shared state, which in turn

simplifies development and decouples different pieces of logic. In addition, using

them makes testing easier. When it comes to React, you already know that having

more stateless components and fewer dependencies is better; that’s why the best

practice is to create pure functions.

In some ways, FP contradicts OOP (or is it OOP that contradicts FP?), with FP fans

saying that Fortran and Java were programming dead ends and that Lisp (and nowa-

days, Clojure and Elm) is the way to go. It’s a fascinating debate to follow. Personally,

I’m slightly biased toward the functional approach.

Many good books have been written about FP, because the concept has been around

for decades. For this reason, I won’t get into much detail here; but I highly recom-

mend learning more about FP, because it will make you a better programmer even if

you never plan to use it at your job.

95Implementing an event

5.3 Implementing an event

To implement lifecycle events, you define them on a class as methods (see sec-

tion 3.2.5)—this is a convention that React expects you to follow. React checks to see

whether there’s a method with an event name; if React finds a method, it will call that

method. Otherwise, React will continue its normal flow. Obviously, event names are

case sensitive like any name in JavaScript.

 To put it differently, under the hood, React calls certain methods during a compo-

nent’s lifecycle if they’re defined. For example, if you define componentDidMount(),

then React will call this method when an element of this component class is mounted.

componentDidMount() belongs to the mounting category listed in table 5.1, and it will

be called once per instance of the component class:

class Clock extends React.Component {
componentDidMount() {
}
...

}

If no componentDidMount() method is defined, React won’t execute any code for this

event. Thus, the name of the method must match the name of the event. Going for-

ward, I’ll use the terms event, event handler, and method interchangeably in this chapter.

 As you might have guessed from its name, the componentDidMount() method is

invoked when a component is inserted into the DOM. This method is a recom-

mended place to put code to integrate with other front-end frameworks and libraries

as well as to send XHR requests to a server, because at this point in the lifecycle, the

component’s element is in the real DOM and you get access to all of its elements,

including children.

 Let’s go back to the issues I mentioned at the beginning of the chapter: resizing,

and fetching data from a server. For the first, you can create an event listener in

componentDidMount() that will listen for window.resize events. For the second, you

can make an XHR call in componentDidMount() and update the state when you have a

response from the server.

 Equally important, componentDidMount() comes in handy in isomorphic/univer-

sal code (where the same components are used on the server and in the browser). You

can put browser-only logic in this method and rest assured that it’ll only be called for

browser rendering, and not on the server side. There’s more on isomorphic JavaScript

with React in chapter 16.

 Most developers learn best by looking at examples. For this reason, let’s consider a

trivial case that uses componentDidMount() to print the DOM information to the con-

sole. This is feasible because this event is fired after all the rendering has happened;

thus, you have access to the DOM elements.

96 CHAPTER 5 React component lifecycle events

 Creating event listeners for component lifecycle events is straightforward: you define

a method on the component/class. For the fun of it, let’s add componentWillMount()

to contrast the absence of the real DOM for this element at this stage.

 The DOM node information is obtained via the React DOM’s utility function

ReactDOM.findDOMNode(), to which you pass the class. Note that DOM isn’t camelCase,

but rather is in all-caps:

class Content extends React.Component {
componentWillMount() {
console.log(ReactDOM.findDOMNode(this))

}
componentDidMount() {
console.dir(ReactDOM.findDOMNode(this))

}
render() {
return (

)
}

}

The result is this output in the developer console, which reassures you that

componentDidMount() is executed when you have real DOM elements (see figure 5.2):

html
null
div

Expects the DOM
node to be null

Expects the DOM
node to be <div>

Figure 5.2 The second log shows the DOM node because componentDidMount() was

fired when the element was rendered and mounted to the real DOM. Thus, you have the node.

97Executing all events together

5.4 Executing all events together

Listing 5.1 (ch05/logger/jsx/content.jsx) and listing 5.2 (ch05/logger/jsx/log-

ger.jsx) show all the events in action at once. For now, all you need to know is that

they’re like classes in the sense that they allow you to reuse code. This logger mixin

can be useful for debugging; it displays all the events, properties, and state when the

component is about to be rerendered and after it’s been rerendered.

class Content extends React.Component {
constructor(props) {
super(props)
this.launchClock()
this.state = {

counter: 0,
currentTime: (new Date()).toLocaleString()

}
}
launchClock() {
setInterval(()=>{

this.setState({
counter: ++this.state.counter,
currentTime: (new Date()).toLocaleString()

})
}, 1000)

}
render() {
if (this.state.counter > 2) return
return <Logger time="{this.state.currentTime}"></Logger>

}
}

class Logger extends React.Component {
constructor(props) {
super(props)
console.log('constructor')

}
componentWillMount() {
console.log('componentWillMount is triggered')

}
componentDidMount(e) {
console.log('componentDidMount is triggered')
console.log('DOM node: ', ReactDOM.findDOMNode(this))

}
componentWillReceiveProps(newProps) {
console.log('componentWillReceiveProps is triggered')
console.log('new props: ', newProps)

}
shouldComponentUpdate(newProps, newState) {

Listing 5.1 Rendering and updating a Logger component three times

Listing 5.2 Observing component lifecycle events

98 CHAPTER 5 React component lifecycle events

console.log('shouldComponentUpdate is triggered')
console.log('new props: ', newProps)
console.log('new state: ', newState)
return true

}
componentWillUpdate(newProps, newState) {
console.log('componentWillUpdate is triggered')
console.log('new props: ', newProps)
console.log('new state: ', newState)

}
componentDidUpdate(oldProps, oldState) {
console.log('componentDidUpdate is triggered')
console.log('new props: ', oldProps)
console.log('old props: ', oldState)

}
componentWillUnmount() {
console.log('componentWillUnmount')

}
render() {
// console.log('rendering... Display')
return (

{this.props.time}
)

}
}

The functions and lifecycle events from the Display component give you console logs

when you run this web page. Don’t forget to open your browser console, because all

the logging happens there, as shown in figure 5.3!

 As noted in the text and shown in the figure, the mounting event fires only once. You

can clearly see this in the logs. After the counter in Context reaches 3, the render func-

tion won’t use Display anymore, and the component is unmounted (see figure 5.4).

 Now that you’ve learned about component lifecycle events, you can use them when

you need to implement logic for components, such as fetching data.

Figure 5.3 The logger has been mounted.

99Mounting events

5.5 Mounting events

The mounting category of events is all about a component being attached to the real

DOM. Think of mounting as a way for a React element to see itself in the DOM. This

typically happens when you use a component in ReactDOM.render() or in the

render() of another, higher-order component that will be rendered to the DOM.

The mounting events are as follows:

 componentWillMount()—React knows that this element will be in the real

DOM.

 componentDidMount()—React has “inserted” the React element into the real

DOM; and element is the DOM node.

constructor() execution happens prior to componentWillMount(). Also, React first

renders and then mounts elements. (Rendering in this context means calling a class’s

render(), not painting the DOM.) Refer to table 5.1 for events in between

componentWillMount() and componentDidMount().

5.5.1 componentWillMount()

It’s worth mentioning that componentWillMount() is invoked only once in the compo-

nent’s lifecycle. The timing of the execution is just before the initial rendering.

 The lifecycle event componentWillMount() is executed when you render a React

element on the browser by calling ReactDOM.render(). Think of it as attaching (or

Figure 5.4 Content was removed from the logger after 2 seconds; hence, the componentWillUnmount() log

entry right before the removal.

100 CHAPTER 5 React component lifecycle events

mounting) a React element to a real DOM node. This happens in the browser: the

front end.

 If you render a React component on a server (the back end, using isomorphic/

universal JavaScript; see chapter 16), which basically gets an HTML string, then—even

though there’s no DOM on the server or mounting in that case—this event will also be

invoked!

 You saw in chapter 4 how to update the currentTime state using Date and

setInterval(). You triggered the series of updates in constructor() by calling

launchClock(). You can do so in componentWillMount() as well.

 Typically, a state change triggers a rerender, right? At the same time, if you

update the state with setState() in the componentWillMount() method or trigger

updates as you did with Clock, then render() will get the updated state. The best

thing is that even if the new state is different, there will be no rerendering because

render() will get the new state. To put it another way, you can invoke setState() in

componentWillMount(). render() will get the new values, if any, and there will be no

extra rerendering.

5.5.2 componentDidMount()

In contrast, componentDidMount() is invoked after the initial rendering. It’s executed

only once and only in the browser, not on the server. This comes in handy when you

need to implement code that runs only for browsers, such as XHR requests.

 In this lifecycle event, you can access any references to children (for example, to

access the corresponding DOM representation). Note that the componentDidMount()

method of child components is invoked before that of parent components.

 As mentioned earlier, the componentDidMount() event is the best place to inte-

grate with other JavaScript libraries. You can fetch a JSON payload that has a list of

users with their info. Then, you can print that information, using a Twitter Bootstrap

table to get the page shown in figure 5.5.

 The structure of the project is as follows:

/users
/css
bootstrap.css

/js
react.js
react-dom.js
script.js
- users.js

/jsx
script.jsx
users.jsx

index.html
real-user-data.json

101Mounting events

You have the DOM element in the event, and you can send XHR/AJAX requests to

fetch the data with the new fetch() API:

fetch(this.props['data-url'])
.then((response)=>response.json())
.then((users)=>this.setState({users: users}))

Figure 5.5 Showing a list of users (fetched from a data store) styled with Twitter Bootstrap

Fetch API

The Fetch API (http://mng.bz/mbMe) lets you make XHR request using promises in a

unifying manner. It’s available in most modern browsers, but refer to the specs

(https://fetch.spec.whatwg.org) and the standard (https://github.com/whatwg/fetch)

to find out if the browsers you need to support for your apps implement it. The usage

is straightforward—you pass the URL and define as many promise then statements

as needed:

fetch('http://node.university/api/credit_cards/')
.then(function(response) {
return response.blob()

})
.then(function(blob) {
// Process blob

})
.catch(function(error) {
console.log('A problem with your fetch operation: ' +

error.message)
})

102 CHAPTER 5 React component lifecycle events

You can put your XHR fetch request in componentDidMount(). You may think that by

putting the code in componentWillMount(), you can optimize loading, but there are

two issues: if you get data from the server faster than your rendering finishes, you may

trigger rerender on an unmounted element, which could lead to unintended conse-

quences. Also, if you’re planning to use a component on the server, then component-

WillMount() will fire there as well.

 Now, let’s look at the entire component, with fetch happening in component-

DidMount() (ch05/users/jsx/users.jsx).

class Users extends React.Component {
constructor(props) {
super(props)
this.state = {

users: []
}

}
componentDidMount() {
fetch(this.props['data-url'])

.then((response)=>response.json())

.then((users)=>this.setState({users: users}))
}
render() {
return <div className="container">
<h1>List of Users</h1>
<table className="table-striped table-condensed table table-bordered

➥ table-hover">
<tbody>{this.state.users.map((user)=>

<tr key={user.id}>
<td>{user.first_name} {user.last_name}</td>
<td> {user.email}</td>
<td> {user.ip_address}</td>

</tr>)}
</tbody>

</table>
</div>
}

}

Notice that users is set to an empty array ([]) in the constructor. This gets around the

need to check for existence later in render(). Repetitive checks and bugs due to

undefined values—what a great way to waste time and get a repetitive-stress injury

Listing 5.3 Fetching data to display in a table

(continued)

If the browser you develop for doesn’t support fetch() yet, you can shim it, or use any

other HTTP agent library such as superagent (https://github.com/visionmedia/super-

agent); request (https://github.com/request/request); axios (https://github.com/

mzabriskie/axios); or even jQuery’s $.ajax() (http://api.jquery.com/jquery.ajax)

or $.get().

Initializes users’
state with an
empty array

Performs a GET XHR request
using the URL from the
property to fetch user data

Retrieves user info
from the response and
assigns it to the state

Iterates over users’
state to create table
rows

103Updating events

from excessive typing. Setting your initial values will help you avoid lots of pain later!

In other words, this is an antipattern:

// Anti-pattern: Don't try this at home!
class Users extends React.Component {

constructor(props) {
super(props)

}
...
render() {
return <div className="container">

<h1>List of Users</h1>
<table className="table-striped table-condensed table table-bordered

➥ table-hover">
<tbody>{(this.state.users && this.state.users.length>0) ?

this.state.users.map((user)=>
<tr key={user.id}>

<td>{user.first_name} {user.last_name}</td>
<td> {user.email}</td>
<td> {user.ip_address}</td>

</tr>) : ''}
</tbody>

</table>
</div>

}
}

5.6 Updating events

As noted earlier, mounting events are often used to integrate React with the outside

world: other frameworks, libraries, or data stores. Updating events are associated with

updating components. These events are as follows, in order from the component life-

cycle’s beginning to its end (see table 5.2 for just the updating lifecycle events and

table 5.1 for all events).

1 componentWillReceiveProps(newProps)
2 shouldComponentUpdate()
3 componentWillUpdate()

4 componentDidUpdate()

Table 5.2 Lifecycle events invoked/called on component update

Updating component properties Updating component state
Updating using

forceUpdate()

componentWillReceiveProps()

shouldComponentUpdate() shouldComponentUpdate()

componentWillUpdate() componentWillUpdate() componentWillUpdate()

render() render() render()

componentDidUpdate() componentDidUpdate() componentDidUpdate()

Doesn’t set the empty
value initially

Checks for existence
(no need with initial

values)

104 CHAPTER 5 React component lifecycle events

5.6.1 componentWillReceiveProps(newProps)

componentWillReceiveProps(newProps) is triggered when a component receives

new properties. This stage is called an incoming property transition. This event allows you

to intercept the component at the stage between getting new properties and before

render(), in order to add some logic.

 The componentWillReceiveProps(newProps) method takes the new prop(s) as an

argument. It isn’t invoked on the initial render of the component. This method is use-

ful if you want to capture the new property and set the state accordingly before the

rerender. The old property value is in the this.props object. For example, the follow-

ing snippet sets the opacity state, which in CSS is 0 or 1, depending on the Boolean

property isVisible (1 = true, 0 = false):

componentWillReceiveProps(newProps) {
this.setState({
opacity: (newProps.isVisible) ? 1 : 0

})
}

Generally speaking, the setState() method in componentWillReceiveProps-

(newProps) won’t trigger extra rerendering.

 In spite of receiving new properties, these properties may not necessarily have new

values (meaning values different from current properties), because React has no way

of knowing whether the property values have changed. Therefore, componentWill-

ReceiveProps(NewProps) is invoked each time there’s a rerendering (of a parent

structure or a call), regardless of property-value changes. Thus, you can’t assume that

newProps always has values that are different from the current properties.

 At the same time, rerendering (invoking render()) doesn’t necessarily mean

changes in the real DOM. The decision whether to update and what to update in the

real DOM is delegated to shouldComponentUpdate() and the reconciliation process.1

5.6.2 shouldComponentUpdate()

Next is the shouldComponentUpdate() event, which is invoked right before render-

ing. Rendering is preceded by the receipt of new properties or state. The should-

ComponentUpdate() event isn’t triggered for the initial render or for forceUpdate()

(see table 5.1).

 You can implement the shouldComponentUpdate() event with return false

to prohibit React from rerendering. This is useful when you’re checking that there

are no changes and you want to avoid an unnecessary performance hit (when

dealing with hundreds of components). For example, this snippet uses the + binary

1 For more reasons why React can’t perform smarter checks before calling componentWillReceiveProps-
(newProps), read the extensive article “(A B) ! (B A),” by Jim Sproch, React, January 8, 2016,
http://mng.bz/3WpG.

105Unmounting event

operator to convert the Boolean isVisible into a number and compare that to the

opacity value:

shouldComponentUpdate(newProps, newState) {
return this.state.opacity !== + newProps.isVisible

}

When isVisible is false and this.state.opacity is 0, the entire render() is

skipped; also, componentWillUpdate() and componentDidUpdate() aren’t called. In

essence, you can control whether a component is rerendered.

5.6.3 componentWillUpdate()

Speaking of componentWillUpdate(), this event is called just before rendering, pre-

ceded by the receipt of new properties or state. This method isn’t called for the initial

render. Use the componentWillUpdate() method as an opportunity to perform prepa-

rations before an update occurs, and avoid using this.setState() in this method!

Why? Well, can you imagine trying to trigger a new update while the component is

being updated? It sounds like a bad idea to me!

 If shouldComponentUpdate() returns false, then componentWillUpdate() isn’t

invoked.

5.6.4 componentDidUpdate()

The componentDidUpdate() event is triggered immediately after the component’s

updates are reflected in the DOM. Again, this method isn’t called for the initial ren-

der. componentDidUpdate() is useful for writing code that works with the DOM and its

other elements after the component has been updated, because at this stage you’ll get

all the updates rendered in the DOM.

 Every time something is mounted or updated, there should be a way to unmount

it. The next event provides a place for you to put logic for unmounting.

5.7 Unmounting event

In React, unmounting means detaching or removing an element from the DOM.

There’s only one event in this category, and this is the last category in the component

lifecycle.

5.7.1 componentWillUnmount()

The componentWillUnmount() event is called just before a component is unmounted

from the DOM. You can add any necessary cleanup to this method; for example, inval-

idating timers, cleaning up any DOM elements, or detaching events that were created

in componentDidMount.

106 CHAPTER 5 React component lifecycle events

5.8 A simple example

Suppose you’re tasked with creating a Note web app (to save text online). You’ve

implemented the component, but initial feedback from users is that they lose their

progress if they close the window (or a tab) unintentionally. Let’s implement the con-

firmation dialog shown in figure 5.6.

 To implement a dialog like that, we need to listen to a special window event.

The tricky part is to clean up after the element is no longer needed, because if the

element is removed but its event is not, memory leaks could be the result! The best

way to approach this problem is to attach the event on mounting and remove the

event on dismounting.

The structure of the project is as follows:

/note
/jsx
note.jsx
script.jsx

/js
note.jsx
react.js
react-dom.js
script.js

index.html

Figure 5.6 A dialog confirmation when the user tries to leave the page

107A simple example

The window.onbeforeunload native browser event (with additional code for cross-

browser support) is straightforward:

window.addEventListener('beforeunload',function () {
let confirmationMessage = 'Do you really want to close?'
e.returnValue = confirmationMessage // Gecko, Trident, Chrome 34+
return confirmationMessage // Gecko, WebKit, Chrome < 34

})

The following approach will work, too:

window.onbeforeunload = function () {
...
return confirmationMessage

}

Let’s put this code in an event listener in componentDidMount() and remove the event

listener in componentWillUnmount() (ch05/note/jsx/note.jsx).

class Note extends React.Component {
confirmLeave(e) {
let confirmationMessage = 'Do you really want to close?'
e.returnValue = confirmationMessage // Gecko, Trident, Chrome 34+
return confirmationMessage // Gecko, WebKit, Chrome <34

}
componentDidMount() {
console.log('Attaching confirmLeave event listener for beforeunload')
window.addEventListener('beforeunload', this.confirmLeave)

}
componentWillUnmount() {
console.log('Removing confirmLeave event listener for beforeunload')
window.removeEventListener('beforeunload', this.confirmLeave)

}
render() {
console.log('Render')
return Here will be our input field for notes (parent will remove in

➥ {this.props.secondsLeft} seconds)
}

}

You want to check how your code works when the Note element is removed, right? For

this reason, you need to remove the Note element so that it’s dismounted. Therefore,

the next step is to implement the parent in which you not only create Note but

remove it. Let’s use a timer for that (setInterval() all the way!), as shown in the fol-

lowing listing (ch05/note/jsx/script.jsx) and figure 5.7.

Listing 5.4 Adding and removing an event listener

108 CHAPTER 5 React component lifecycle events

let secondsLeft = 5

let interval = setInterval(()=>{
if (secondsLeft == 0) {
ReactDOM.render(

<div>
Note was removed after {secondsLeft} seconds.

</div>,
document.getElementById('content')

)
clearInterval(interval)

} else {
ReactDOM.render(

<div>
<Note secondsLeft={secondsLeft}/>

</div>,
document.getElementById('content')

)
}
secondsLeft--

}, 1000)

Figure 5.8 shows the result (with console logs): render, attach event listener, render

four more times, remove event listener.

 If you don’t remove the event listener in componentWillUnmount() (you can com-

ment out this method to see), the page will still have a pesky dialog even though the

Listing 5.5 Rendering Note before removing it

A timer counts down the seconds.

Each event is shown in the Console tab.

Figure 5.7 Note will be replaced by another element in 5, 4, … seconds.

109A simple example

Note element is long gone, as shown in figure 5.9. This isn’t a good UX and may lead

to bugs. You can use this lifecycle event to clean up after components.

 The React team is listening to feedback from React developers. Most of these lifecycle

events allow developers to tweak the behavior of their components. Think of lifecycle

events as black-belt-Ninja-Matrix-Jedi skills. You can code without them, but boy your

code will be more powerful with them. What’s interesting is that there’s still conversa-

tion about the best practices and usage. React is still evolving, and there may be changes

Figure 5.8 Note is replaced by a div, and there will be no dialog confirmation

when the user tries to leave the page.

Figure 5.9 Dialog confirmation when the user tries to leave the page

110 CHAPTER 5 React component lifecycle events

or additions to the lifecycle events in the future. If you need to refer to the official doc-

umentation, see https://facebook.github.io/react/docs/react-component.html.

5.9 Quiz

1 componentWillMount() will be rendered on the server. True or false?

2 Which event will fire first, componentWillMount() or componentDidMount()?

3 Which of the following is a good place to put an AJAX call to the server to get some

data for a component? componentWillUnmount(), componentHasMounted(),

componentDidMount(), componentWillReceiveData(), or componentWillMount()

4 componentWillReceiveProps() means there was a rerendering of this element

(from a parent structure), and you know for sure that you have new values for

the properties. True or false?

5 Mounting events happen multiple times on each rerendering. True or false?

5.10 Summary

 componentWillMount() is invoked on both the server and the client, whereas

componentDidMount() is invoked only on the client.

 Mounting events are typically used to integrate React with other libraries and

get data from stores or servers.

 You use shouldComponentUpdate() to optimize rendering.

 You use componentWillReceiveProps() to perform a state change with new

properties.

 Unmounting events are typically used for cleanup.

 Updating events provide a place to put logic that relies on new properties or

state, and they give you more granular control over when to update a view.

5.11 Quiz answers

1True. Although there’s no DOM, this event will be triggered on the server render-

ing, but componentDidMount() won’t.

2componentWillMount is first, followed by componentDidMount().

3componentDidMount(), because it won’t be triggered on the server.

4False. You can’t guarantee new values. React doesn’t know if the values have been

changed.

5False. Mounting isn’t triggered on rerender to optimize performance, because

excessive mounting is a relatively expensive operation.

111

Handling events in React

So far, you’ve learned how to render UIs that have zero user interaction. In other

words, you’re just displaying data. For example, you’ve built a clock that doesn’t

accept user inputs, such as setting the time zone.

 Most of the time, you don’t have static UIs; you need to build elements that are

smart enough to respond to user actions. How do you respond to user actions such

as clicking and dragging a mouse?

 This chapter provides the solution to how to handle events in React. Then, in

chapter 7, you’ll apply this knowledge of events to working with web forms and

their elements. I’ve mentioned that React supports only certain events; in this chap-

ter, I’ll show you how to work with events that aren’t supported by React.

NOTE The source code for the examples in this chapter is at
https://www.manning.com/books/react-quickly and https://github.com/
azat-co/react-quickly/tree/master/ch06 (in the ch06 folder of the GitHub
repository https://github.com/azat-co/react-quickly). You can also find
some demos at http://reactquickly.co/demos.

This chapter covers

 Working with DOM events in React

 Responding to DOM events that aren’t supported by React

 Integrating React with other libraries: jQuery UI events

Watch this chapter’s introduction video by

scanning this QR code with your phone or going

to http://reactquickly.co/videos/ch06.

112 CHAPTER 6 Handling events in React

6.1 Working with DOM events in React

Let’s look how you can make React elements respond to user actions by defining event

handlers for those actions. You do this by defining the event handler (function defini-

tion) as the value of an element attribute in JSX and as an element property in plain

JavaScript (when createElement() is called directly without JSX). For attributes that

are event names, you use standard W3C DOM event names in camelCase, such as

onClick or onMouseOver, as in

onClick={function() {...}}

or

onClick={() => {...}}

For example, in React, you can define an event listener that’s triggered when a user

clicks a button. In the event listener, you’re logging the this context. The event

object is an enhanced version of a native DOM event object (called SyntheticEvent):

<button onClick={(function(event) {
console.log(this, event)

}).bind(this)}>
Save

</button>

bind() is needed so that in the event-handler function, you get a reference to the

instance of the class (React element). If you don’t bind, this will be null (use strict

mode). You don’t bind the context to the class using bind(this) in the following

cases:

 When you don’t need to refer to this class by using this

 When you’re using the older style, React.createClass(), instead of the newer

ES6+ class style, because createClass() autobinds it for you

 When you’re using fat arrows ((){})

You can also make things neater by using a class method as event handler (let’s name

it handleSave()) for the onClick event. Consider a SaveButton component that,

when clicked, prints the value of this and event, but uses a class method as shown in

figure 6.1 and the following listing (ch06/button/jsx/button.jsx).

class SaveButton extends React.Component {
handleSave(event) {
console.log(this, event)

}
render() {
return <button onClick={this.handleSave.bind(this)}>

Listing 6.1 Declaring an event handler as a class method

Passes the function
definition returned
by bind() to onClick

113Working with DOM events in React

Save
</button>

}
}

This is how the save button will log the output of this and event.

Moreover, you can bind an event handler to the class in the class’s constructor. Func-

tionally, there’s no difference; but if you’re using the same method more than once in

render(), then you can reduce duplication by using the constructor binding. Here’s

the same button, but with constructor binding for the event handler:

class SaveButton extends React.Component {
constructor(props) {
super(props)
this.handleSave = this.handleSave.bind(this)

}
handleSave(event) {
console.log(this, event)

}
render() {
return <button onClick={this.handleSave}>

Save
</button>

}
}

Binding event handlers is my favorite and recommended approach, because it elimi-

nates duplication and puts all the binding neatly in one place.

 Table 6.1 lists the current event types supported by React v15. Notice the use of

camelCase in the event names, to be consistent with other attribute names in React.

Figure 6.1 Clicking the button prints the value of this: SaveButton.

Binds the “this” context to the
class to use “this” in the event
handler to refer to this class

Passes the function
definition to onClick

114 CHAPTER 6 Handling events in React

As you can see, React supports several types of normalized events. If you contrast this

with the list of standard events at https://developer.mozilla.org/en-US/docs/Web/

Events, you’ll see that React’s support is extensive—and you can be sure that team

React will add more events in the future! For more information and event names, visit

the documentation page at http://facebook.github.io/react/docs/events.html.

6.1.1 Capture and bubbling phases

As I’ve noted, React is declarative, not imperative, which removes the need to manipu-

late objects; and you don’t attach events to your code as you would with jQuery (for

example, $('.btn').click(handleSave)). Instead, you declare an event in the JSX as

an attribute (for instance, onClick={handleSave}). If you’re declaring mouse events,

the attribute name can be any of the supported events from table 6.1. The value of the

attribute is your event handler.

 For example, if you want to define a mouse-hover event, you can use onMouseOver,

as shown in the following code. Hovering will display “mouse is over” in your DevTools

or Firebug console when you move your cursor over the <div>’s red border:

<div
style={{border: '1px solid red'}}
onMouseOver={()=>{console.log('mouse is over')}} >
Open DevTools and move your mouse cursor over here

</div>

Table 6.1 DOM events supported by React v15

Event group Events supported by React

Mouse events onClick, onContextMenu, onDoubleClick, onDrag, onDragEnd,

onDragEnter, onDragExit, onDragLeave, onDragOver, onDragStart,

onDrop, onMouseDown, onMouseEnter, onMouseLeave, onMouseMove,

onMouseOut, onMouseOver, onMouseUp

Keyboard events onKeyDown, onKeyPress, onKeyUp

Clipboard events onCopy, onCut, onPaste

Form events onChange, onInput, onSubmit

Focus events onFocus, onBlur

Touch events onTouchCancel, onTouchEnd, onTouchMove, onTouchStart

UI events onScroll

Wheel events onWheel

Selection events onSelect

Image events onLoad, onError

Animation events onAnimationStart, onAnimationEnd, onAnimationIteration

Transition events onTransitionEnd

115Working with DOM events in React

The events shown previously, such as onMouseOver, are triggered by an event in the

bubbling phase (bubble up). As you know, there’s also a capture phase (trickle down),

which precedes the bubbling and target phases. First is the capture phase, from the

window down to the target element; next is the target phase; and only then comes the

bubbling phase, when an event travels up the tree back to the window, as shown in fig-

ure 6.2.

 The distinction between phases becomes important when you have the same event

on an element and its ancestor(s). In bubbling mode, the event is first captured and

handled by the innermost element (target) and then propagated to outer elements

(ancestors, starting with the target’s parent). In capture mode, the event is first cap-

tured by the outermost element and then propagated to the inner elements.

 To register an event listener for the capture phase, append Capture to an event

name. For example, instead of using onMouseOver, you use onMouseOverCapture to

handle the mouseover event in the capture phase. This applies to all the event names

listed in table 6.1.

Window

Shady

Grove
Aeolian

Over

the River,

Charlie

Dorian

Document

1. Capture

 phase

Capture phase

3. Bubbling

 phase

2. Target

 phase

<html>

<body>

<table>

Target phase

Bubbling phase

<tbody>

<tr>

<td> <td>

<tr>

<td> <td>

Figure 6.2 Capture, target, and bubbling phases

116 CHAPTER 6 Handling events in React

To illustrate, suppose you have a <div> with a regular (bubbling) event and a capture

event. Those events are defined with onMouseOver and onMouseOverCapture, respec-

tively (ch06/mouse-capture/jsx/mouse.jsx).

class Mouse extends React.Component {
render() {
return <div>

<div
style={{border: '1px solid red'}}
onMouseOverCapture={((event)=>{

console.log('mouse over on capture event')
console.dir(event, this)}).bind(this)}

onMouseOver={((event)=>{
console.log('mouse over on bubbling event')
console.dir(event, this)}).bind(this)} >
Open DevTools and move your mouse cursor over here

</div>
</div>

}
}

The container has a red border 1 pixel wide; it contains some text, as shown in fig-

ure 6.3, so you know where to hover the cursor. Each mouseover event will log what

type of event it is as well as the event object (hidden under Proxy in DevTools in fig-

ure 6.3 due to the use of console.dir()).

 Not surprisingly, the capture event is logged first. You can use this behavior to stop

propagation and set priorities between events.

 It’s important to understand how React implements events, because events are the

cornerstone of UIs. Chapter 7 dives deeper into React events.

Listing 6.2 Capture event following by bubbling event

Figure 6.3 The capture event happens before the regular event.

117Working with DOM events in React

6.1.2 React events under the hood

Events work differently in React than in jQuery or plain JavaScript, which typically put

the event listener directly on the DOM node. When you put events directly on nodes,

there may be problems removing and adding events during the UI lifecycle. For exam-

ple, suppose you have a list of accounts, and each can be removed or edited, or new

accounts can be added to the list. The HTML might look something like this, with

each account element uniquely identified by ID:

<ul id="account-list">
<li id="account-1">Account #1
<li id="account-2">Account #2
<li id="account-3">Account #3
<li id="account-4">Account #4
<li id="account-5">Account #5
<li id="account-6">Account #6

If accounts are removed from or added to the list frequently, then managing events

will become difficult. A better approach is to have one event listener on a parent

(account-list) and to listen for bubbled-up events (an event bubbles higher up the

DOM tree if nothing catches it on a lower level). Internally, React keeps track of events

attached to higher elements and target elements in a mapping. This allows React to

trace the target from the parent (document), as shown in figure 6.4.

 Let’s see how this event delegation to the parent looks in action in the example

Mouse component from listing 6.2. There’s a <div> element with the mouseover React

event. You want to inspect the events on this element.

1. DOM event (e.g.,

 account added)

2. Event bubbles

 up to Parent

3. Event bubbles up to

 Document (root); captured

 by React event listener

4. Event handler

 manages events

Parent

Document

li

li

li

li

ul

Event handler

Figure 6.4 A DOM event (1) bubbling to its ancestors (2-3), where it’s captured by a regular (bubbling-

stage) React event listener (4), because in React, events are captured at the root (Document)

118 CHAPTER 6 Handling events in React

If you open Chrome DevTools or Firefox Tools and select the data-reactroot ele-

ment in the Elements or Inspector tab (or use Inspect in the Chrome context menu

or Inspect Element in the Firefox context menu), then you can refer to the <div> in

the console (another tab in DevTools/Firebug) by typing $0 and pressing Enter. This

is a nice little trick.

 Interestingly, this DOM node <div> doesn’t have any event listeners. $0 is the <div> and

a reactroot element; see figure 6.5. Therefore, you can check what events are attached

to this particular element (DOM node) by using the global getEventListeners() method

in the DevTools console:

getEventListeners($0)

The result is an empty object {}. React didn’t attach event listeners to the reactroot

node <div>. Hovering the mouse on the element logs the statements—you can clearly

see that the event is being captured! Where did it go?

1. Select data-reactroot in the Elements tab.

2. Type $0, and press Enter.

Figure 6.5 Inspecting events on the <div> element (there are none)

119Working with DOM events in React

Feel free to repeat the procedure with <div id="content"> or perhaps with the red-

bordered <div> element (child of reactroot). For each currently selected element

on the Elements tab, $0 will be the selected element, so select a new element and

repeat getEventListeners($0). Still nothing?

 Okay. Let’s examine the events on document by calling this code from the console:

getEventListeners(document)

Boom! You have your event: Object {mouseover: Array[1]}, as shown in figure 6.6.

Now you know that React attached the event listener to the ultimate parent, the grand-

daddy of them all—the document element. The event was not attached to an individ-

ual node like <div> or an element with the data-reactroot attribute.

The event is attached to
the document element.

Figure 6.6 Inspecting events on the document element (there is one)

120 CHAPTER 6 Handling events in React

Next, you can remove this event by invoking the following line in the console:

getEventListeners(document).mouseover[0].remove()

Now the message “mouse is over” won’t appear when you move the cursor. The event

listener that was attached to document is gone, illustrating that React attaches events to

document, not to each element. This allows React to be faster, especially when working

with lists. This is contrary to how jQuery works: with that library, events are attached to

individual elements. Kudos to React for thinking about performance.

 If you have other elements with the same type of event—for example, two mouse-

overs—then they’re attached to one event and handled by React’s internal mapping

to the correct child (target element), as shown in figure 6.7. And speaking of target

elements, you can get information about the target node (where the event originated)

from the event object.

6.1.3 Working with the React SyntheticEvent event object

Browsers can differ in their implementations of the W3C specification (see

www.w3.org/TR/DOM-Level-3-Events). When you’re working with DOM events, the

event object passed to the event handler may have different properties and methods.

This can lead to cross-browser issues when you’re writing event-handling code. For

example, to get the target element in IE version 8, you’d need to access

event.srcElement, whereas in Chrome, Safari, and Firefox, you’d use event.target:

var target = event.target || event.srcElement
console.log(target.value)

Of course, things are better in terms of cross-browser issues in 2016 than in 2006. But

still, do you want to spend time reading specs and debugging issues due to obscure

discrepancies between browser implementations? I don’t.

Figure 6.7 React reuses event listeners on the root, so you see only one of each type

even when you have one or more elements with mouseover.

121Working with DOM events in React

 Cross-browser issues aren’t good because users should have the same experience

on different browsers. Typically, you need to add extra code, such as if/else state-

ments, to account for the difference in browser APIs. You also have to perform more

testing in different browsers. In short, working around and fixing cross-browser issues

is worse on the annoyance scale than CSS issues, IE8 issues, or scrupulous designers in

hipster glasses.

 React has a solution: a wrapper around browsers’ native events. This makes events

consistent with the W3C specification regardless of the browser on which you run your

pages. Under the hood, React uses its own special class for synthetic events (Synthetic-

Event). Instances of this SyntheticEvent class are passed to the event handler. For

example, to get access to a synthetic event object, you can add an argument event to the

event-handler function, as shown in the following listing (ch06/mouse/jsx/mouse.jsx).

This way, the event object is output in the console, as shown in figure 6.8.

class Mouse extends React.Component {
render() {
return <div>

<div
style={{border: '1px solid red'}}
onMouseOver={((event)=>{

console.log('mouse is over with event')
console.dir(event)})} >
Open DevTools and move your mouse cursor over here

</div>
</div>

}
}

Listing 6.3 Event handler receiving a synthetic event

Defines
an event

argument Accesses the SyntheticEvent
object to log interactively (dir)

Figure 6.8 Hovering the mouse over the box prints the event object in the DevTools console.

122 CHAPTER 6 Handling events in React

As you’ve seen before, you can move the event-handler code into a component method

or a standalone function. For example, you can create a handleMouseOver() method

using ES6+/ES2015+ class method syntax and refer to it from the return of render() with

{this.handleMouseOver.bind(this)}. The bind() is needed to transfer the proper

value of this into the function. When you use fat-arrow syntax as you did in the previous

example, this happens automatically. It also happens automatically with createClass()

syntax. Not with class, though. Of course, if you don’t use this in the method, you

don’t have to bind it; just use onMouseOver={this.handleMouseOver}.

 The name handleMouseOver() is arbitrary (unlike the names of lifecycle events,

covered in chapter 5) and doesn’t have to follow any convention as long as you and

your team understand it. Most of the time in React, you prefix an event handler with

handle to distinguish it from a regular class method, and you include either an event

name (such as mouseOver) or the name of the operation (such as save).

class Mouse extends React.Component {
handleMouseOver(event) {
console.log('mouse is over with event')
console.dir(event.target)

}
render(){
return <div>

<div
style={{border: '1px solid red'}}
onMouseOver={this.handleMouseOver.bind(this)} >

Open DevTools and move your mouse cursor over here
</div>

</div>
}

}

The event has the same properties and methods as most native browser events, such as

stopPropagation(), preventDefault(), target, and currentTarget. If you can’t

find a native property or method, you can access a native browser event with

nativeEvent:

event.nativeEvent

Following is a list of some of the attributes and methods of React’s v15.x Synthetic-

Event interface:

 currentTarget—DOMEventTarget of the element that’s capturing the event

(can be a target or the parent of a target)

 target—DOMEventTarget, the element where the event was triggered

 nativeEvent—DOMEvent, the native browser event object

Listing 6.4 Event handler as a class method; binding in render()

123Working with DOM events in React

 preventDefault()—Prevents the default behavior, such as a link or a form-

submit button

 isDefaultPrevented()—A Boolean that’s true if the default behavior was

prevented

 stopPropagation()—Stops propagation of the event

 isPropagationStopped()—A Boolean that’s true if propagation was stopped

 type—A string tag name

 persist()—Removes the synthetic event from the pool and allows references

to the event to be retained by user code

 isPersistent—A Boolean that’s true if SyntheticEvent was taken out of the

pool

The aforementioned target property of the event object has the DOM node of the

object on which the event happened, not where it was captured, as with currentTarget

(https://developer.mozilla.org/en-US/docs/Web/API/Event/target). Most often,

when you build UIs, in addition to capturing, you need to get the text of an input field.

You can get it from event.target.value.

 The synthetic event is nullified (meaning it becomes unavailable) once the event

handler is done. So you can use the same event reference in a variable to access it later

or to access it asynchronously (in the future) in a callback function. For example, you

can save the reference of the event object in a global e as follows (ch06/mouse-

event/jsx/mouse.jsx).

class Mouse extends React.Component {
handleMouseOver(event) {
console.log('mouse is over with event')
window.e = event // Anti-pattern
console.dir(event.target)
setTimeout(()=>{

console.table(event.target)
console.table(window.e.target)

}, 2345)
}
render() {
return <div>

<div
style={{border: '1px solid red'}}
onMouseOver={this.handleMouseOver.bind(this)}>

Open DevTools and move your mouse cursor over here
</div>

</div>
}

}

Listing 6.5 Nullifying a synthetic event

Uses the event object and its
attributes in the method

By default, you can’t use an event
in an asynchronous callback or
by calling window.e.

124 CHAPTER 6 Handling events in React

You’ll get a warning saying that React is reusing the synthetic event for performance

reasons (see figure 6.9):

This synthetic event is reused for performance reasons. If you're seeing this,

➥ you're accessing the property `target` on a released/nullified synthetic

➥ event. This is set to null.

If you need to keep the synthetic event after the event handler is over, use the

event.persist() method. When you apply it, the event object won’t be reused and

nullified.

 You’ve seen that React will even synthesize (or normalize) a browser event for you,

meaning that React will create a cross-browser wrapper around the native event

objects. The benefit of this is that events work identically in virtually all browsers. And

in most cases, you have all the native methods on the React event, including

event.stopPropagation() and event.preventDefault(). But if you still need to

access a native event, it’s in the event.nativeEvent property of the synthetic event

object. Obviously, if you work with native events directly, you’ll need to know about

and work with any cross-browser differences you encounter.

6.1.4 Using events and state

Using states with events, or, to put it differently, being able to change a component’s

state in response to an event, will give you interactive UIs that respond to user actions.

This is going to be fun, because you’ll be able to capture any events and change views

based on these events and your app logic. This will make your components self-

contained, because they won’t need any external code or representation.

Figure 6.9 Saving a synthetic event object for later use isn’t possible by default—hence, the warning.

125Working with DOM events in React

 For example, let’s implement a button with a label that has a counter starting at 0,

as shown in figure 6.10. Each click of the button increments the number shown on a

button (1, 2, 3, and so on).

 You start by implementing the following:

 constructor()—this.state equals 1 because you must set the counter to 0

before you can use it in the view.

 handleClick()—Event handler that increments the counter.

 render()—Render method that returns the button JSX.

The click() method is not unlike any other React component method. Remember

getUrl() in chapter 3 and handleMouseOver() earlier in this chapter? This compo-

nent method is declared similarly, except that you have to manually bind the this

context. The handleClick() method sets the counter state to the current value of

counter, incremented by 1 (ch06/onclick/jsx/content.jsx).

class Content extends React.Component {
constructor(props) {
super(props)
this.state = {counter: 0}

}
handleClick(event) {

Listing 6.6 Updating state as a result of a click action

Figure 6.10 Clicking the button increments the counter, which has an initial value of 0.

Sets the initial
state counter to 0

126 CHAPTER 6 Handling events in React

this.setState({counter: ++this.state.counter})
}
render() {
return (

<div>
<button

onClick={this.handleClick.bind(this)}
className="btn btn-primary">
Don’t click me {this.state.counter} times!

</button>
</div>

)
}

}

When you click the button, you’ll see the counter increment with each click. Fig-

ure 6.10 shows that I clicked the button eight times: the counter is now at 8 but ini-

tially was at 0. Brilliant, isn’t it?

 Analogous to onClick or onMouseOver, you can use any DOM events supported by

React. In essence, you define the view and an event handler that changes the state.

You don’t imperatively modify the representation. This is the power of declarative

style!

 The next section will teach you how to pass event handlers and other objects to

children elements.

6.1.5 Passing event handlers as properties

Consider this scenario: you have a button that’s a stateless component. All it has is styl-

ing. How do you attach an event listener so this button can trigger some code?

 Let’s go back to properties for a moment. Properties are immutable, which means

they don’t change. They’re passed by parent components to their children. Because

Increases the
counter value by 1

Attaches the onClick
event listener to the
handleClick trigger

Displays
 the value

 of the state
counter

Invocation vs. definition

Just a reminder: did you notice that although this.handleClick() is a method in

listing 6.6, you don’t invoke it in JSX when you assign it to onClick (that is, <button
onClick={this.handleClick})? In other words, there are no parentheses (())

after this.handleClick() inside the curly braces. That’s because you need to pass

a function definition, not invoke it. Functions are first-class citizens in JavaScript, and

in this case, you pass the function definition as a value to the onClick attribute.

On the other hand, bind() is invoked because it lets you use the proper value of

this, but bind() returns a function definition. So you still get the function definition

as the value of onClick.

Keep in mind, as noted previously, onClick isn’t a real HTML attribute, but syntactically

it looks just like any other JSX declaration (for example, className={btnClassName}
or href={this.props.url}).

127Working with DOM events in React

functions are first-class citizens in JavaScript, you can have a property in a child ele-

ment that’s a function and use it as an event handler.

 The solution to the problem outlined earlier—triggering an event from a stateless

component—is to pass the event handler as a property to this stateless component

and use the property (event-handler function) in the stateless component (invoke the

function). For example, let’s break down the functionality of the previous example

into two components: ClickCounterButton and Content. The first will be dumb

(stateless) and the second smart (stateful).

When you run the code, the counter increases with each click. Visually, nothing has

changed from the previous example with the button and the counter (figure 6.10);

but internally, there’s an extra component ClickCounterButton (stateless and pretty

much logic-less) in addition to Content, which still has all the logic.

 ClickCounterButton doesn’t have its own onClick event handler (that is, it has no

this.handler or this.handleClick). It uses the handler passed down to it by its par-

ent in a this.props.handler property. Generally, using this approach is beneficial for

handling events in a button, because the button is a stateless presentational/dumb

component. You can reuse this button in other UIs.

 The following listing shows the code for the presentational component that ren-

ders the button (ch06/onclick-props/jsx/click-counter-button.jsx); the Content par-

ent that renders this element is shown shortly, in listing 6.8.

class ClickCounterButton extends React.Component {
render() {
return <button

onClick={this.props.handler}

Listing 6.7 Stateless button component

Presentational/Dumb vs. container/smart components

Dumb and smart components are sometimes called presentational and container

components, respectively. This dichotomy is related to statelessness and stateful-

ness but isn’t always exactly the same.

Most of the time, presentational components don’t have states and can be stateless

or function components. That’s not always the case, because you may need to have

some state that relates to the presentation.

Presentational/dumb components often use this.props.children and render

DOM elements. On the other hand, container/smart components describe how

things work without DOM elements, have states, typically use higher-order compo-

nent patterns, and connect to data sources.

Using a combination of dumb and smart components is the best practice. Doing so

keeps things clean and allows for better separation of concerns.

128 CHAPTER 6 Handling events in React

className="btn btn-danger">
Increase Volume (Current volume is {this.props.counter})

</button>
}

}

The ClickCounterButton component, shown in figure 6.11, is dumber than Dumb &

Dumber,1 but that’s what’s good about this architecture. The component is simple and

easy to grasp.

The ClickCounterButton component also uses the counter property, which is ren-

dered with {this.props.counter}. Supplying properties to children like ClickCoun-

terButton is straightforward if you remember the examples from chapter 2. You use

the standard attribute syntax: name=VALUE.

 For example, to provide counter and handler properties to the ClickCounter-

Button component, specify the attributes in the JSX declaration of the parent’s render

parameter (the parent here is Content):

<div>
<ClickCounterButton
counter={this.state.counter}
handler={this.handleClick}/>

</div>

counter in ClickCounterButton is a property and thus immutable; but in the Content

parent, it’s a state and thus mutable. (For a refresher on properties versus state, see

chapter 4.) Obviously, the names can differ. You don’t have to keep the names the

same when you pass properties to children. But I find that keeping the same name

helps me understand that the data is related between different components.

1 www.imdb.com/title/tt0109686.

Figure 6.11 Passing an event handler as a property to a button (presentational component) enables

the incrementing of the counter in the button label, which is also a property of a button.

129Working with DOM events in React

 What’s happening? The initial counter (the state) is set to 0 in the Content parent.

The event handler is defined in the parent as well. Therefore, the child (Click-

CounterButton) triggers the event on a parent. The code for the Content parent

com ponent with constructor() and handleClick() is shown next (ch06/onclick-

props/jsx/content.jsx).

class Content extends React.Component {
constructor(props) {
super(props)
this.handleClick = this.handleClick.bind(this)
this.state = {counter: 0}

}
handleClick(event) {
this.setState({counter: ++this.state.counter})

}
render() {
return (

<div>
<ClickCounterButton

counter={this.state.counter}
handler={this.handleClick}/>

</div>
)

}
}

As I said earlier, in JavaScript, functions are first-class citizens, and you can pass them

as variables or properties. Thus, there should be no big surprises here. Now the ques-

tion arises, where do you put logic such as event handlers—in a child or parent?

6.1.6 Exchanging data between components

In the previous example, the click event handler was in the parent element. You can

put the event handler in the child, but using the parent allows you to exchange infor-

mation among child components.

 Let’s use a button as an example but this time remove the counter value from

render() (1, 2, 3, and so on). The components are single-minded, granular pieces

of representation (remember?), so the counter will be in another component:

Counter. Thus, you’ll have three components in total: ClickCounterButton, Content,

and Counter.

 As you can see in figure 6.12, there are now two components: the button and the

text below it. Each has properties that are states in the Content parent. In contrast to

the previous example (figure 6.11), here you need to communicate between the but-

ton and the text to count clicks. In other words, ClickCounterButton and Counter

need to talk to each other. They’ll do it via Content, not directly (communicating

directly would be a bad pattern because it would create tight coupling).

Listing 6.8 Passing an event handler as a property

Binds the context in the
constructor so you can use
this.setState(), which refers
to the instance of this
Content class

130 CHAPTER 6 Handling events in React

ClickCounterButton remains stateless as in the previous example, just like most React

components should be: no thrills, just properties and JSX.

class ClickCounterButton extends React.Component {
render() {
return <button

onClick={this.props.handler}
className="btn btn-info">
Don’t touch me with your dirty hands!

</button>
}

}

Of course, you can also write ClickCounterButton as a function instead of a class to

simplify the syntax a little:

const ClickCounterButton = (props) => {
return <button
onClick={props.handler}
className="btn btn-info">
Don’t touch me with your dirty hands!

</button>
}

The following new component, Counter, displays the value property that’s the coun-

ter (names can be different—you don’t have to always use counter):

class Counter extends React.Component {
render() {
return Clicked {this.props.value} times.

}
}

Listing 6.9 Button component using an event handler from Content

Figure 6.12 Splitting state and working with two stateless child components (by allowing them to exchange data

via a parent): one for the counter (text) and another for the button

131Responding to DOM events not supported by React

Finally, we get to the parent component that provides the properties: one is the event

handler, and the other is a counter. You need to update the render parameter accord-

ingly, but the rest of the code remains intact (ch06/onclick-parent/jsx/content.jsx).

class Content extends React.Component {
constructor(props) {
super(props)
this.handleClick = this.handleClick.bind(this)
this.state = {counter: 0}

}
handleClick(event) {
this.setState({counter: ++this.state.counter})

}
render() {
return (

<div>
<ClickCounterButton handler={this.handleClick}/>

<Counter value={this.state.counter}/>

</div>
)

}
}

To answer the initial question of where to put the event-handling logic, the rule of

thumb is to put it in the parent or wrapper component if you need interaction

between child components. If the event concerns only the child components, there’s

no need to pollute the components higher up the parent chain with event-handling

methods.

6.2 Responding to DOM events not supported by React

Table 6.1 listed events supported by React. You may wonder about DOM events not

supported by React. For example, suppose you’re tasked with creating a scalable UI

that needs to become bigger or smaller depending on a window size (resize) event.

But this event isn’t supported! There’s a way to capture resize and any other event,

and you already know the React feature to implement it: lifecycle events.

 In this example, you’ll implement radio buttons. As you may know, standard HTML

radio button elements scale (become larger or smaller) badly and inconsistently across

browsers. For this reason, back when I worked at DocuSign, I implemented scalable CSS

radio buttons (http://mng.bz/kPMu) to replace standard HTML radio inputs. I did

that in jQuery. These CSS buttons can be scaled via jQuery by manipulating their CSS.

Let’s see how to create a scalable radio button UI in React. You’ll make the same CSS

buttons scale with React when you resize the screen, as shown in figure 6.13.

Listing 6.10 Passing an event handler and state to two components

132 CHAPTER 6 Handling events in React

As I said earlier, the resize event isn’t supported by React—adding it to the element

as shown here won’t work:

...
render() {
return <div>

<div onResize={this.handleResize}
className="radio-tagger"
style={this.state.taggerStyle}>

...

There’s a simple way to attach unsupported events like resize and most custom ele-

ments you need to support: using React component lifecycle events. Listing 6.11

(ch06/radio/jsx/radio.jsx) adds resize event listeners to window in componentDid-

Mount() and then removes the same event listeners in componentWillUnmount() to

make sure nothing is left after this component is gone from the DOM. Leaving event

listeners hanging after their components are removed is a great way to introduce

memory leaks that might crash your app at some point. Believe me, memory leaks

can be a source of sleepless, red-eyed, Red Bull–fueled nights spent debugging

and cursing.

class Radio extends React.Component {
constructor(props) {
super(props)
this.handleResize = this.handleResize.bind(this)
let order = props.order
let i = 1
this.state = {

outerStyle: this.getStyle(4, i),
innerStyle: this.getStyle(1, i),
selectedStyle: this.getStyle(2, i),
taggerStyle: {top: order*20, width: 25, height: 25}

}

Listing 6.11 Using lifecycle events to listen to DOM events

Figure 6.13 Scalable CSS radio buttons managed by React, which is listening to a window resize event. As the

window size changes, so does the size of the radio buttons.

Saves styles
in the state

133Responding to DOM events not supported by React

}
getStyle(i, m) {
let value = i*m
return {

top: value,
bottom: value,
left: value,
right: value,

}
}
componentDidMount() {
window.addEventListener('resize', this.handleResize)

}
componentWillUnmount() {
window.removeEventListener('resize', this.handleResize)

}
handleResize(event) {
let w = 1+ Math.round(window.innerWidth / 300)
this.setState({

taggerStyle: {top: this.props.order*w*10, width: w*10, height: w*10},
textStyle: {left: w*13, fontSize: 7*w}

})
}
...

The helper function getStyle() abstracts some of the styling because there’s repeti-

tion in the CSS, such as top, bottom, left, and right, but with different values that

depend on the width of the window. Hence, getStyle() takes the value and the mul-

tiplier m and returns pixels. (Numbers in React’s CSS become pixels.)

 The rest of the code is easy. All you need to do is implement the render() method,

which uses the states and properties to render four <div/> elements. Each one has a

special style, defined earlier in constructor().

...
render() {
return <div>

<div className="radio-tagger" style={this.state.taggerStyle}>
<input type="radio" name={this.props.name} id={this.props.id}>
</input>
<label htmlFor={this.props.id}>

<div className="radio-text" style={this.state.textStyle}>

➥ {this.props.label}</div>
<div className="radio-outer" style={this.state.outerStyle}>

<div className="radio-inner" style={this.state.innerStyle}>
<div className="radio-selected"

➥ style={this.state.selectedStyle}>
</div>

</div>
</div>

</label>

Listing 6.12 Using state values for styles to resize elements

Uses a function to create various
styles from width (which will
change later) and a multiplier

Attaches an unsupported
event listener to window

Removes the
unsupported
event listener
from window

Implements a magic function to
handle radio button resizing

based on the new screen size

134 CHAPTER 6 Handling events in React

</div>
</div>

}
}

That’s it for the Radio component implementation. The gist of this example is that by

using lifecycle events in your components, you can create custom event listeners. In

this example, you did so by using window. This is similar to how React’s event listeners

work: React attaches events to document, as you remember from the beginning of this

chapter. And don’t forget to remove the custom event listeners on the unmount event.

 If you’re interested in the scalable radio buttons and their non-React implementa-

tion (jQuery), I wrote a separate blog post at http://mng.bz/kPMu and created an

online demo at http://jsfiddle.net/DSYz7/8. Of course, you can find the React imple-

mentation in the source code for this book.

 This brings us to the topic of integrating React with other UI libraries, such as

jQuery.

6.3 Integrating React with other libraries: jQuery UI events

As you’ve seen, React provides standard DOM events; but what if you need to integrate

with another library that uses (triggers or listens to) nonstandard events? For exam-

ple, suppose you have jQuery components that use slide (as in the slider control ele-

ment). You want to integrate a React widget into your jQuery app. You can attach any

DOM events not provided by React, using the component lifecycle events component-

DidMount and componentWillUnmount.

 As you may have guessed from the choice of the lifecycle events, you’ll be attaching

an event listener when the component is mounted and detaching the event listener

when the component is unmounted. Detaching (you can think of it as a cleanup) is

important so that no event listeners are causing conflicts or performance issues by

hanging around as orphans. (Orphaned event handlers are handlers that don’t have

DOM nodes that created them—potential memory leaks.)

 For example, suppose you’re working at a music-streaming company, and you’re

tasked with implementing volume controls on the new version of the web player

(think Spotify or iTunes). You need to add a label and buttons in addition to the leg-

acy jQuery slider (http://plugins.jquery.com/ui.slider).

 You want to implement a label with a numeric value, and two buttons to decrease

and increase the value by 1. The idea is to make these pieces work together: when a

user slides the pin (the square peg on a slider) left or right, the numeric value and

the values on the buttons should change accordingly. In the same fashion, the user

should be able to click either button, and the slider pin should move left or right

correspondingly. In essence, you want to create not just a slider, but the widget

shown in figure 6.14.

135Integrating React with other libraries: jQuery UI events

6.3.1 Integrating buttons

You have at least two options when it comes to integration: first, attaching events for

jQuery Slider in a React component; and second, using window. Let’s start with the

first approach and use it for buttons.

NOTE This approach for integrating buttons is tightly coupled. Objects
depend on each other. Generally, you should avoid tightly coupled patterns.
The other, more loosely coupled option, will be implemented for integrating
labels after we cover this approach.

When there’s a slide event on the jQuery slider (meaning there’s a change in that

value), you want to update the button values (text on buttons). You can attach an

event listener to the jQuery slider in componentDidMount and trigger a method on a

React component (handleSlide) when there’s a slide event. With every slide and

change in value, you’ll update the state (sliderValue). SliderButtons implements

this approach, as shown in the following listing (ch06/slider/jsx/slider-buttons.jsx).

class SliderButtons extends React.Component {
constructor(props) {

super(props)
this.state = {sliderValue: 0}

}
handleSlide(event, ui) {

this.setState({sliderValue: ui.value})
}
handleChange(value) {

return ()=> {
$('#slider').slider('value', this.state.sliderValue + value)
this.setState({sliderValue: this.state.sliderValue + value})

}
}
componentDidMount() {

$('#slider').on('slide', this.handleSlide)
}

Listing 6.13 Integrating with a jQuery plug-in via its events

Figure 6.14 React components (buttons and

the text “Value: …”) can be integrated with

other libraries, such as jQuery Slider, to make

all elements from all libraries communicate

with each other.

Sets
 the initial
value to 0

jQuery will pass two
arguments: a jQuery event
and the ui object with the
current value, which you
use to update the state.Defines a method

to update the
slider when a

button is clicked
Uses the Factory Function pattern
for the -1 and +1 buttons

Uses a jQuery
method to set
the new value

Updates the state
to a new value

136 CHAPTER 6 Handling events in React

componentWillUnmount() {
$('#slider').off('slide', this.handleSlide)

}
...

})

The render() method of SliderButtons has two buttons with onClick events; a

dynamic disabled attribute so you don’t set values less than 0 (see figure 6.15) or

greater than 100; and Twitter Bootstrap classes for buttons (ch06/slider/jsx/slider-

buttons.jsx).

...
render() {

return <div>
<button disabled={(this.state.sliderValue<1)?true:false}

className="btn default-btn"
onClick={this.handleChange(-1)}>

1 Less ({this.state.sliderValue-1})
</button>
<button disabled={(this.state.sliderValue>99) ? true : false}

className="btn default-btn"
onClick={this.handleChange(1)}>

1 More ({this.state.sliderValue+1})
</button>

</div>
}

})

The end result is that if the value is less

than or greater than the set range (min-

imum of 0, maximum of 100), the but-

tons become disabled. For example,

when the value is 0, the Less button is

disabled, as shown in figure 6.15.

 Dragging the slider changes the text

on the buttons and disables/enables

them as needed. Thanks to the call to

the slider in handleChange(), clicking

the buttons moves the slider left or

right. Next, you’ll implement the Value

label, which is a SliderValue React component.

6.3.2 Integrating labels

You read about calling jQuery directly from React methods. At the same time, you

can decouple jQuery and React by using another object to catch events. This is a

Listing 6.14 Rendering slider buttons

Removes the
event listener
on unmount

Invokes
this.handleChange

with -1 to get a
function from the

function factory

Uses the ternary operator to
disable buttons when the value

is less than 1 or greater than 99

Applies Twitter
Bootstrap

classes using
className

Renders the next
value for the slider
as button labels

Figure 6.15 Programmatically disabling the Less

button to prevent negative values

137Integrating React with other libraries: jQuery UI events

loosely coupled pattern and is often preferable, because it helps avoid extra dependen-

cies. In other words, different components don’t need to know the details of each

others’ implementation. Thus, the SliderValue React component won’t know how

to call a jQuery slider. This is good, because later you can more easily change Slider

to Slider 2.0 with a different interface.

 You can implement this by dispatching events to window in jQuery events and

defining event listeners for window in React component lifecycle methods. The follow-

ing listing shows SliderValue (ch06/slider/jsx/slider-value.jsx).

class SliderValue extends React.Component {
constructor(props) {
super(props)
this.handleSlide = this.handleSlide.bind(this)
this.state = {sliderValue: 0}

}
handleSlide(event) {
this.setState({sliderValue: event.detail.ui.value})

}
componentDidMount() {
window.addEventListener('slide', this.handleSlide)

}
componentWillUnmount() {
window.removeEventListener('slide', this.handleSlide)

}
render() {
return <div className="" >

Value: {this.state.sliderValue}
</div>

}
}

In addition, you need to dispatch a custom event. In the first approach (Slider-

Buttons), you didn’t need to do this, because you used existing plug-in events. In this

implementation, you have to create an event and dispatch it to window with data.

You can implement the dispatchers of the slide custom event alongside the code that

creates the jQuery slider object, which is a script tag in index.html

(ch06/slider/index.html).

let handleChange = (e, ui)=>{
var slideEvent = new CustomEvent('slide', {

detail: {ui: ui, jQueryEvent: e})
})

Listing 6.15 Integrating with a jQuery plug-in via window

Listing 6.16 Setting up event listeners on a jQuery UI plug-in

Attaches the slide
event listener to the

window object to
trigger handleSlide()

Removes slide from window to
avoid orphan event handlers and

memory leaks

Creates an event handler for the jQuery
slider, which will dispatch custom events

Creates a
custom event

Passes jQuery
data that has

the current
slider value

138 CHAPTER 6 Handling events in React

window.dispatchEvent(slideEvent)
}
$('#slider').slider({

'change': handleChange,
'slide': handleChange

})

When you run the code, both buttons and the value label will work seamlessly. You

used two approaches: one loosely coupled and the other tightly coupled. The latter’s

implementation is shorter, but the former is preferable because it will allow you to

modify the code more easily in the future.

 As you can see from this integration, React can work nicely with other libraries by

listening to events in its componentDidMount() lifecycle method. React acts in a very

un-opinionated way. React can play nicely with others! React’s easy integration with

other libraries is a great advantage because developers can switch to React gradually

instead of rewriting an entire application from scratch, or they can just continue to

use their favorite good-old libraries with React indefinitely.

6.4 Quiz

1 Select the correct syntax for the event declaration: onClick=this.doStuff,

onclick={this.doStuff}, onClick="this.doStuff", onClick={this.doStuff},

or onClick={this.doStuff()}

2 componentDidMount() won’t be triggered during server-side rendering of the

React component on which it’s declared. True or false?

3 One way to exchange information among child components is to move the

object to the parent of the children. True or false?

4 You can use event.target asynchronously and outside the event handler by

default. True or false?

5 You can integrate with third-party libraries and events not supported by React

by setting up event listeners in the component lifecycle events. True or false?

6.5 Summary

 onClick is for capturing mouse and trackpad clicks.

 The JSX syntax for event listeners is .

 Bind event handlers with bind() in constructor() or in JSX if you want to use

this in the event handler as the value of the component class instance.

 componentDidMount() is triggered only on the browser. componentWillMount()

is triggered on both the browser and the server.

 React supports most of the standard HTML DOM events by providing and using

synthetic event objects.

 componentDidMount() and componentWillUnmount() can be used to integrate

React with other frameworks and events not supported by React.

Dispatches an event
to window

Creates a
slider using a

container
with ID slider

Attaches event listeners on
change (programmatic) and
slide (UI)

139Quiz answers

6.6 Quiz answers

1onClick={this.doStuff} is correct because only the function definition must be

passed to onClick, not the invocation (the result of the invocation, to be precise).

2True. componentDidMount() is only executed for browser React (React in the

browser), not for server-side React. That’s why developers use componentDid-

Mount() for AJAX/XHR requests. See chapter 5 for a refresher on component life-

cycle events.

3True. Moving data up the tree hierarchy of components lets you pass it to different

child components.

4False. This object is reused, so you can’t use it in an asynchronous operation unless

persist() is called on SyntheticEvent.

5True. Component lifecycle events are one of the best places to do this, because

they let you do the prep work before a component is active and before it’s

removed.

140

Working
 with forms in React

Thus far, you’ve learned about events, states, component composition, and other

important React topics, features, and concepts. But aside from capturing user

events, I haven’t covered how to capture text input and input via other form ele-

ments like input, textarea, and option. Working with them is paramount to web

development, because they allow your applications to receive data (such as text)

and actions (such as clicks) from users.

 This chapter refers to pretty much everything I’ve covered so far. You’ll begin to

see how everything fits together.

This chapter covers

 Defining forms and form elements

 Capturing data changes

 Using references to access data

 Alternative approaches for capturing user-input data

from form elements

 Setting default values for form elements

Watch this chapter’s introduction video by

scanning this QR code with your phone or going

to http://reactquickly.co/videos/ch07.

141The recommended way to work with forms in React

NOTE The source code for the examples in this chapter is at www.manning
.com/books/react-quickly and https://github.com/azat-co/react-quickly/
tree/master/ch07 (in the ch07 folder of the GitHub repository https://
github.com/azat-co/react-quickly). You can also find some demos at
http://reactquickly.co/demos.

7.1 The recommended way to work with forms in React

In regular HTML, when you’re working with an input element, the page’s DOM main-

tains that element’s value in its DOM node. It’s possible to access the value via methods

like document.getElementById('email').value or by using jQuery methods. In

essence, the DOM is your storage.

 In React, when you’re working with forms or any other user-input fields such as

standalone text fields or buttons, you have an interesting problem to solve. The React

documentation says, “React components must represent the state of the view at any

point in time and not only at initialization time.” React is all about keeping things sim-

ple by using declarative style to describe UIs. React describes the UI: its end stage, how

it should look.

 Can you spot a conflict? In traditional HTML form elements, the states of elements

change with user input. But React uses a declarative approach to describe UIs. Input

needs to be dynamic to reflect the state properly.

 Thus, opting not to maintain the component state (in JavaScript) and not to sync it

with the view adds problems; there may be a situation when the internal state and view

are different. React won’t know about the changed state. This can lead to all sorts of

trouble and bugs, and negates React’s simple philosophy. The best practice is to keep

React’s render() as close to the real DOM as possible—and that includes the data in

the form elements.

 Consider the following example of a text-input field. React must include the new

value in its render() for that component. Consequently, you need to set the value for

the element to a new value using value. But if you implement an <input> field as in

HTML, React will always keep render() in sync with the real DOM. React won’t allow

users to change the value. Try it yourself. It’s peculiar, but that’s the appropriate

behavior for React!

render() {
return <input type="text" name="title" value="Mr." />

}

This code represents the view at any state, so the value will always be Mr.. On the other

hand, input fields must change in response to the user clicking or typing. Given these

points, let’s make the value dynamic. This is a better implementation, because it’ll be

updated from the state:

render() {
return <input type="text" name="title" value={this.state.title} />

}

142 CHAPTER 7 Working with forms in React

But what’s the value of state? React can’t know about users typing in the form ele-

ments. You need to implement an event handler to capture changes with onChange:

handleChange(event) {
this.setState({title: event.target.value})

}
render() {

return <input type="text" name="title" value={this.state.title}

➥ onChange={this.handleChange.bind(this)}/>
}

Given these points, the best practice is to implement these things to sync the internal

state with the view (see figure 7.1):

1 Define elements in render() using values from state.

2 Capture changes to a form element as they happen, using onChange.

3 Update the internal state in the event handler.

4 New values are saved in state, and then the view is updated by a new render().

It may seem like a lot of work at first glance, but I hope that when you’ve used React

more, you’ll appreciate this approach. It’s called one-way binding because the state

changes views, and that’s it. There’s no trip back: only a one-way trip from state to

view. With one-way binding, a library won’t update the state (or the model) automati-

cally. One of the main benefits of one-way binding is that it removes complexity when

you’re working with large apps where many views implicitly can update many states

(data models) and vice versa (see figure 7.2).

 Simple doesn’t always mean writing less code. Sometimes, as in this case, you’ll have

to write extra code to manually set the data from event handlers to the state (which is

rendered to the view); but this approach tends to be superior when it comes to com-

plex UIs and single-page applications with myriads of views and states. Simple isn’t

always easy.

1. Input (to current elements

 defined in view) 2. Captured changes

 from event handler

3. New values

 from state

event.target.value
4. Updated view

value={this.state.value}

View State

User

Figure 7.1 The correct way to work with form elements: from user input to events, then to the state

and the view

143The recommended way to work with forms in React

Conversely, two-way binding makes it possible for views to change states automatically

without you explicitly implementing the process. Two-way binding is how Angular 1

works. Interestingly, Angular 2 borrowed the concept of one-way binding from React

and made it the default (you can still have two-way binding explicitly).

 For this reason, I’ll first cover the recommended approach of working with forms.

It’s called using controlled components, and it ensures that the internal component state

is always in sync with the view. Controlled form elements are called that because React

controls or sets the values. The alternative approach is uncontrolled components, which

I’ll discuss in section 7.2.

 You’ve learned the best practice of working with input fields in React: capturing

the change and applying it to the state as shown in figure 7.1 (input to changed view).

Next, let’s look at how you define a form and its elements.

7.1.1 Defining a form and its events in React

Let’s start with the <form> element. Typically, you don’t want input elements hanging

around randomly in the DOM. This situation can turn bad if you have many function-

ally different sets of inputs. Instead, you wrap input elements that share a common

purpose in a <form></form> element.

 Having a <form> wrapper isn’t required. It’s fine to use form elements by them-

selves in simple UIs. In more-complex UIs, where you may have multiple groups of ele-

ments on a single page, it’s wise to use <form> for each such group. React’s <form> is

rendered like an HTML <form>, so whatever rules you have for the HTML form will

apply to React’s <form> element, too. For example, according to the HTML5 spec, you

should not nest forms.1

1 The specification says content must be flow content, but with no <form> element descendants. See
www.w3.org/TR/html5/forms.html#the-form-element.

ViewModel

One-way binding

Amount: $200

To: #324

From: #9944

Transfer

{amount:

200.00,

to: 324,

from: 9944}

ModelView

Two-way binding

Amount: $100

To: ________

From: ______

$200->$100

Transfer

{amount:

100.00,

to: 324,

from: 9944}

Figure 7.2 One-way binding is responsible for the model-to-view transition. Two-way binding also

handles changes from view to model.

144 CHAPTER 7 Working with forms in React

 The <form> element can have events. React supports three events for forms in

addition to the standard React DOM events (as outlined in table 6.1):

 onChange—Fires when there’s a change in any of the form’s input elements.

 onInput—Fires for each change in <textarea><input> element values. The

React team doesn’t recommend using it (see the accompanying sidebar).

 onSubmit—Fires when the form is submitted, usually by pressing Enter.

In addition to the three events already listed, <form> can have standard React events

such as onKeyUp and onClick. Using form events may come in handy when you need

to capture a specific event for the entire form (that is, a group of input elements).

 For example, it helps provide a good UX if you allow users to submit data when

they press Enter (assuming they’re not in a textarea field, in which case Enter should

create a new line). You can listen to the form-submit event by creating an event lis-

tener that triggers this.handleSubmit():

handleSubmit(event) {
...

}
render() {

<form onSubmit={this.handleSubmit}>
<input type="text" name="email" />

</form>
}

NOTE You need to implement the handleSubmit() function outside of
render(), just as you’d do with any other event. React doesn’t require a
naming convention, so you can name the event handler however you wish as
long as the name is understandable and somewhat consistent. This book
sticks with the most popular convention: prefixing event handlers with the
word handle to distinguish them from regular class methods.

onChange vs. onInput

React’s onChange fires on every change, in contrast to the DOM’s change event

(http://mng.bz/lJ37), which may not fire on each value change but fires on lost

focus. For example, for <input type="text">, a user can be typing with no

onChange; only after the user presses Tab or clicks away with their mouse to another

element (lost focus) is onChange fired in HTML (regular browser event). As mentioned

earlier, in React, onChange fires on each keystroke, not just on lost focus. On the

other hand, onInput in React is a wrapper for the DOM’s onInput, which fires on

each change.

The bottom line is that React’s onChange works differently than onChange in HTML:

it’s more consistent and more like HTML’s onInput. The recommended approach is

to use onChange in React and to use onInput only when you need to access native

behavior for the onInput event. The reason is that React’s onChange wrapper behavior

provides consistency and thus sanity.

145The recommended way to work with forms in React

NOTE As a reminder, don’t invoke a method (don’t put parentheses) and
don’t use double quotes around curly braces (correct: EVENT={this
.METHOD}) when setting the event handler. For some of you, this is basic
JavaScript and straightforward, but you wouldn’t believe how many times I’ve
seen errors related to these two misunderstandings in React code: you pass
the definition of the function, not its result; and you use curly braces as values
of the JSX attributes.

Another way to implement form submission on Enter is to manually listen to the key-

up event (onKeyUp) and check for the key code (13 for Enter):

handleKeyUp(event) {
if (event.keyCode == 13) return this.sendData()

}
render() {

return <form onKeyUp={this.handleKeyUp}>
...
</form>

}

Note that the sendData() method is implemented somewhere else in the

class/component. Also, for this.sendData() to work, you’ll need to use bind(this)

to bind the context to the event handler in constructor().

 To summarize, you can have events on the form element, not just on individual

elements in the form. Next, we’ll look at how to define form elements.

7.1.2 Defining form elements

You implement almost all input fields in HTML with just four elements: <input>,

<textarea>, <select>, and <option>. Do you remember that in React, properties are

immutable? Well, form elements are special because users need to interact with the

elements and change these properties. For all other elements, this is impossible.

 React made these elements special by giving them the mutable properties value,

checked, and selected. These special mutable properties are also called interactive

properties.

NOTE React DOM also supports other elements related to building forms,
such as <keygen>, <datalist>, <fieldset>, and <label>. These elements
don’t possess superpowers like a mutable value attribute/property. They’re
rendered as the corresponding HTML tags. For this reason, this book focuses
only on the four main elements with superpowers.

Here’s a list of the interactive properties/fields (ones that can change) you can read

from events like onChange attached to form elements (covered in section 6.1.3):

 value—Applies to <input>, <textarea>, and <select>

 checked—Applies to <input> with type="checkbox" and type="radio"

 selected—Applies to <option> (used with <select>)

146 CHAPTER 7 Working with forms in React

You can read the values and change them by working with these interactive (mutable)

properties. Let’s look at some examples of how to define each of the elements.

THE <INPUT> ELEMENT

The <input> element renders multiple fields by using different values for its type

attribute:

 text—Plain text-input field.

 password—Text-input field with a masked display (for privacy).

 radio—Radio button. Use the same name to create a group of radio buttons.

 checkbox—Check box element. Use the same name to create a group.

 button—Button form element.

The main use case for all <input> type elements—except check boxes and radio but-

tons—is to use value as the element’s interactive/changeable property. For example,

an email input field can use the email state and onChange event handler:

<input
type="text"
name="email"
value={this.state.email}
onChange={this.handleEmailChange}/>

The two exceptions that don’t have value as their primary mutable attribute are

inputs with the types checkbox and radio. They use checked because these two types

have one value per HTML element, and thus the value doesn’t change, but the state of

checked/selected does. For example, you can define three radio

buttons in one group (radioGroup) by defining these three ele-

ments, as shown in figure 7.3.

 As mentioned earlier, the values (value) are hardcoded

because you don’t need to change them. What changes with user

actions is the element’s checked attribute, as shown in the follow-

ing listing (ch07/elements/jsx/content.jsx).

class Content extends React.Component {
constructor(props) {
super(props)
this.handleRadio = this.handleRadio.bind(this)
...
this.state = {

...
radioGroup: {

angular: false,
react: true,
polymer: false

}

Listing 7.1 Rendering radio buttons and handling changes

Sets the default checked
radio button in the state

Figure 7.3 Radio

button group

147The recommended way to work with forms in React

}
}
handleRadio(event) {
let obj = {} // erase other radios
obj[event.target.value] = event.target.checked // true
this.setState({radioGroup: obj})

}
...
render() {
return <form>

<input type="radio"
name="radioGroup"
value='angular'
checked={this.state.radioGroup['angular']}
onChange={this.handleRadio}/>

<input type="radio"
name="radioGroup"
value='react'
checked={this.state.radioGroup['react']}
onChange={this.handleRadio}/>

<input type="radio"
name="radioGroup"
value='polymer'
checked={this.state.radioGroup['polymer']}
onChange={this.handleRadio}/>

...
</form>

}
}

For check boxes, you follow an approach similar to that for radio buttons: using the

checked attribute and Boolean values for states. Those Booleans can be stored in a

checkboxGroup state:

class Content extends React.Component {
constructor(props) {
super(props)
this.handleCheckbox = this.handleCheckbox.bind(this)
// ...
this.state = {

// ...
checkboxGroup: {

node: false,
react: true,
express: false,
mongodb: false

}
}

}

Then the event handler (which you bind in the constructor) grabs the current values,

adds true or false from event.target.value, and sets the state:

Uses the target.checked attribute to
get a Boolean that indicates whether

this radio button is selected

Uses an attribute from
the state object or any
state attribute

Uses the same onChange
event handler because you
can get the radio button
value from target.value

148 CHAPTER 7 Working with forms in React

handleCheckbox(event) {
let obj = Object.assign(this.state.checkboxGroup)
obj[event.target.value] = event.target.checked
this.setState({checkboxGroup: obj})

}

There’s no need for the assignment from the state in radio, because radio buttons

can have only one selected value. Thus, you use an empty object. This isn’t the case

with check boxes: they can have multiple values selected, so you need a merge, not a

replace.

 In JavaScript, objects are passed and assigned by references. So in the statement

obj = this.state.checkboxGroup, obj is really a state. As you’ll recall, you aren’t sup-

posed to change the state directly. To avoid any potential conflicts, it’s better to assign

by value with Object.assign(). This technique is also called cloning. Another, less

effective and more hacky way to assign by value is to use JSON:

clonedData = JSON.parse(JSON.stringify(originalData))

When you’re using state arrays instead of objects and need to

assign by value, use clonedArray = Array.from(originArray)

or clonedArray = originArray.slice().

 You can use the handleCheckbox() event handler to get the

value from event.target.value. The next listing shows

render() (ch07/elements/jsx/content.jsx), which uses the

state values for four check boxes, as shown in figure 7.4.

<input type="checkbox"
name="checkboxGroup"
value='node'
checked={this.state.checkboxGroup['node']}
onChange={this.handleCheckbox}/>

<input type="checkbox"
name="checkboxGroup"
value='react'
checked={this.state.checkboxGroup['react']}
onChange={this.handleCheckbox}/>

<input type="checkbox"
name="checkboxGroup"
value='express'
checked={this.state.checkboxGroup.express}
onChange={this.handleCheckbox}/>

<input type="checkbox"
name="checkboxGroup"
value='mongodb'
checked={this.state.checkboxGroup['mongodb']}
onChange={this.handleCheckbox}/>

Listing 7.2 Defining check boxes

True or false

Uses state as a value. It can
be an attribute of an object
or just a state attribute.

Uses onChange to
capture actions

Uses dot notation when
keys are valid JS names

No need to bind in the element,
due to binding in the constructor
(true for all check boxes)

Figure 7.4 Rendering

check boxes with React

as the preselected option

149The recommended way to work with forms in React

In essence, when you’re using check boxes or radio buttons, you can hardcode the

value in each individual element and use checked as your mutable attribute. Let’s see

how to work with other input elements.

THE <TEXTAREA> ELEMENT

<textarea> elements are for capturing and displaying long text inputs such as notes,

blog posts, code snippets, and so on. In regular HTML, <textarea> uses inner HTML

(that is, children) for the value:

<textarea>
With the right pattern, applications...

</textarea>

Figure 7.5 shows an example.

In contrast, React uses the value attribute. In view of this, setting a value as inner

HTML/text is an antipattern. React will convert any children (if you use them) of

<textarea> to the default value (more on default values in section 7.2.4):

<!-- Anti-pattern: AVOID doing this! -->
<textarea name="description">{this.state.description}</textarea>

Instead, it’s recommended that you use the value attribute (or property) for

<textarea>:

render() {
return <textarea name="description" value={this.state.description}/>

}

To listen for the changes, use onChange as you would for <input> elements.

THE <SELECT> AND <OPTION> ELEMENTS

Select and option fields are great UX-wise for allowing users to select a single value or

multiple values from a prepopulated list of values. The list of values is compactly hid-

den behind the element until users expand it (in the case of a

single select), as shown in figure 7.6.

 <select> is another element whose behavior is different in

React compared to regular HTML. For instance, in regular HTML,

you might use selectDOMNode.selectedIndex to get the index

Figure 7.5 Defining and rendering

the <textarea> element

Figure 7.6 Rendering

and preselecting the

value of a drop-down

150 CHAPTER 7 Working with forms in React

of the selected element, or selectDOMNode.selectedOptions. In React, you use value

for <select>, as in the following example (ch07/elements/jsx/content.jsx).

...
constructor(props) {

super(props)
this.state = {selectedValue: 'node'}

}
handleSelectChange(event) {

this.setState({selectedValue: event.target.value})
}
...
render() {

return <form>
<select

value={this.state.selectedValue}
onChange={this.handleSelectChange}>

<option value="ruby">Ruby</option>
<option value="node">Node</option>
<option value="python">Python</option>

</select>
</form>

}
...

This code renders a drop-down menu and preselects the node value (which must be

set in constructor(), as shown in figure 7.6). Yay for Node!

 Sometimes you need to use a multiselect element. You can do so in JSX/React by

providing the multiple attribute without any value (React defaults to true) or with the

value {true}.

TIP Remember that for consistency, and to avoid confusion, I recommend
wrapping all Boolean values in curly braces {} and not "". Sure, "true" and
{true} produce the same result. But "false" will also produce true. This is
because the string "false" is treated as true in JavaScript (truthy).

To preselect multiple items, you can pass an array of options to <select> via its value

attribute. For example, this code preselects Meteor and React:

<select multiple={true} value={['meteor', 'react']}>
<option value="meteor">Meteor</option>
<option value="react">React</option>
<option value="jQuery">jQuery</option>

</select>

multiple={true} renders the multiselect element, and the

Meteor and React values are preselected as shown in figure 7.7.

Listing 7.3 Rendering form elements

Figure 7.7 Rendering

and preselecting

multiselect elements

151The recommended way to work with forms in React

 Overall, defining form elements in React isn’t much different than doing so in reg-

ular HTML, except that you use value more often. I like this consistency. But defining

is half the work; the other half is capturing the values. You did a little of that in the

previous examples. Let’s zoom in on event captures.

7.1.3 Capturing form changes

As mentioned earlier, to capture changes to a form element, you set up an onChange

event listener. This event supersedes the normal DOM’s onInput. In other words, if

you need the regular HTML DOM behavior of onInput, you can use React’s onInput.

On the other hand, React’s onChange isn’t exactly the same as the regular DOM

onChange. The regular DOM onChange may be fired only when the element loses

focus, whereas React’s onChange fires on all new input. What triggers onChange varies

for each element:

 <input>, <textarea>, and <select>—onChange is triggered by a change in

value.

 <input> with type checkbox or radio—onChange is triggered by a change in

checked.

Based on this mapping, the approach to reading the value varies. As an argument of

the event handler, you’re getting a SyntheticEvent. It has a target property of

value, checked, or selected, depending on the element.

 To listen for changes, you define the event handler somewhere in your component

(you can define it inline too, meaning in the JSX’s {}) and create the onChange attri-

bute pointing to your event handler. For example, this code captures changes from an

email field (ch07/elements/jsx/content.jsx).

handleChange(event) {
console.log(event.target.value)

}
render() {

return <input
type="text"
onChange={this.handleChange}
defaultValue="hi@azat.co"/>

}

Interestingly, if you don’t define onChange but provide value, React will issue a warn-

ing and make the element read-only. If your intention is to have a read-only field, it’s

better to define it explicitly by providing readOnly. This will not only remove the

warning, but also ensure that other programmers who read this code know this is a

read-only field by design. To set the value explicitly, set the readOnly value to

{true}—that is, readOnly={true}—or add the readOnly attribute by itself without

the value, and React by default will add the value of true to the attribute.

Listing 7.4 Rendering form elements and capturing changes

152 CHAPTER 7 Working with forms in React

 Once you capture changes in elements, you can store them in the component’s

state:

handleChange(event) {
this.setState({emailValue: event.target.value})

}

Sooner or later, you’ll need to send this information to a server or another compo-

nent. In this case, you’ll have the values neatly organized in the state.

 For example, suppose you want to create a loan application form that includes the

user’s name, address, telephone number, and Social Security number. Each input

field handles its own changes. At the bottom of this form, you’ll put a Submit button

to send the state to the server. The following listing shows the name field with

onChange, which keeps all input in the state (ch07/elements/jsx/content.jsx).

constructor(props) {
super(props)
this.handleInput = this.handleInput.bind(this)
this.handleSubmit = this.handleSubmit.bind(this)
...

}
handleFirstNameChange(event) {

this.setState({firstName: event.target.value})
}
...
handleSubmit() {

fetch(this.props['data-url'], {method: 'POST', body:

➥ JSON.stringify(this.state)})
.then((response)=>{return response.json()})
.then((data)=>{console.log('Submitted: ', data)})

}
render() {

return <form>
<input name="firstName"

onChange={this.handleFirstNameChange}
type="text"/>

...
<input

type="button"
onClick={this.handleSubmit}
value="Submit"/>

</form>
}

NOTE Fetch is an experimental native browser method to perform promise-
based AJAX/XHR requests. You can read about its usage and support (it’s sup-
ported by most modern browsers as of this writing) at http://mng.bz/mbMe.

Listing 7.5 Rendering form elements

Captures
changes to

the firstName
field by

saving them
to the state

Sends data to a URL
from the data-url
property with the

Fetch promise-based
browser API

(experimental as of
this writing, but

supported by most
modern browsers)

Defines an event
handler to handle
the Submit button

153The recommended way to work with forms in React

You’ve learned how to define elements, capture changes with events, and update the

state (which you use to display values). The next section walks through an example.

7.1.4 Account field example

Continuing with the loan application scenario, once the loan is approved, users need to

be able to type in the number of the account to which they want their loan money trans-

ferred. Let’s implement an account field component using your new skills. This is a con-

trolled element, which is the best practice when it comes to working with forms in React.

 In the component shown in listing 7.6 (ch07/account/jsx/content.jsx), you have

an account number input field that needs to accept numbers only (see figure 7.8). To

limit the input to a number (0–9), you can use a controlled component to weed out

all non-numeric values. The event handler sets state only after filtering the input.

class Content extends React.Component {
constructor(props) {
super(props)
this.handleChange = this.handleChange.bind(this)
this.state = {accountNumber: ''}

}

Listing 7.6 Implementing a controlled component

Only digits are allowed
because React controls
the element’s value.

Figure 7.8 You can type anything you want, as shown in the console. But only digits are allowed as the value

and in the view, because this element is controlled.

Sets the initial value of
the account number to
an empty string

154 CHAPTER 7 Working with forms in React

handleChange(event) {
console.log('Typed: ', event.target.value)
this.setState({accountNumber: event.target.value.replace(/[^0-9]/ig,

➥ '')})
}
render() {
return <div>

Account Number:
<input

type="text"
onChange={this.handleChange}
placeholder="123456"
value={this.state.accountNumber}/>

{this.state.accountNumber.length > 0 ? 'You entered: ' +

➥ this.state.accountNumber: ''}
</div>

}
})

You use a regular expression (http://mng.bz/r7sq), /[^0-9]/ig, and the string function

replace (http://mng.bz/2Qon) to remove all non-digits. replace(/[^0-9]/ig, '')

is an uncomplicated regular expression function that replaces anything but numbers

with an empty space. ig stands for case insensitive and global (in other words, find

all matches).

 render() has the input field, which is a controlled component because

value={this.state.accountNumber}. When you try this example, you’ll be able to

type in only numbers because React sets the new state to the filtered number-only

value (see figure 7.9).

 By following React’s best practice for working with input elements and forms, you

can implement validation and enforce that the representation is what the app wants it

to be.

NOTE Obviously, in the account component, you’re implementing a front-
end validation, which won’t prevent a hacker from inputting malicious data
into your XHR request sent to the server. Therefore, make sure you have
proper validation on the back-end/server and/or business layer, such as
ORM/ODM (https://en.wikipedia.org/wiki/Object-relational_mapping).

So far, you’ve learned about the best practice for working with forms: creating con-

trolled components. Let’s cover some alternatives.

Outputs the unfiltered
value as it was typed

Filters the value and
updates the state

Captures
changes

Controls the element by
assigning value to state

Prints the account number if it’s not empty. “length”
is a string property that returns the number of

characters. If the value is empty, you print nothing.

155Alternative ways to work with forms

7.2 Alternative ways to work with forms

Using controlled form elements is best practice. But as you’ve seen, this approach

requires additional work, because you need to manually capture changes and update

states. In essence, if you define the value of the attributes value, checked, and

selected using strings, properties, or states, then an element is controlled (by React).

 At the same time, form elements can be uncontrolled when the value attributes

aren’t set (neither to a state nor to a static value). Even though this is discouraged for

the reasons listed at the beginning of this chapter (the view’s DOM state may be differ-

ent than React’s internal state), uncontrolled elements can be useful when you’re

building a simple form that will be submitted to the server. In other words, consider

using the uncontrolled pattern when you’re not building a complex UI element with a

lot of mutations and user actions; it’s a hack that you should avoid most of the time.

 Typically, to use uncontrolled components, you define a form-submit event, which

is typically onClick on a button and/or onSubmit on a form. Once you have this event

handler, you have two options:

 Capture changes as you do with controlled elements, and use state for submis-

sion but not for values (it’s an uncontrolled approach, after all!).

 Don’t capture changes.

React DevTools shows element
structure, props, and state, which
in this case is restricted to digits only.

Figure 7.9 The controlled element filters input by setting state to digits only.

156 CHAPTER 7 Working with forms in React

The first approach is straightforward. It’s about having the same event listeners and

updating the states. That’s too much coding if you’re using the state only at the final

stage (for form submission).

WARNING React is still relatively new, and the best practices are still being
formed through real-life experiences of not just writing but also maintaining
apps. Recommendations may change based on a few years of maintaining a
large React app. The topic of uncontrolled components is a grey area for
which there’s no clear consensus. You may hear that this is an antipattern and
should be avoided completely. I don’t take sides but present you with enough
information to make your own judgment. I do so because I believe you should
have all the available knowledge and are smart enough to act on it. The bot-
tom line is this: consider the rest of the chapter optional reading—a tool you
may or may not use.

7.2.1 Uncontrolled elements with change capturing

As you’ve seen, in React, an uncontrolled component means the value property isn’t set

by the React library. When this happens, the component’s internal value (or state)

may differ from the value in the component’s representation (or view). Basically,

there’s a dissonance between internal state and representation. The component state

can have some logic (such as validation); and with an uncontrolled component pat-

tern, your view will accept any user input in a form element, thus creating the dispar-

ity between view and state.

 For example, this text-input field is uncontrolled because React doesn’t set the

value:

render() {
return <input type="text" />

}

Any user input will be immediately rendered in the view. Is this good or bad? Bear

with me; I’ll walk you through this scenario.

 To capture changes in an uncontrolled component, you use onChange. For example,

the input field in figure 7.10 has an onChange event handler (this.handleChange),

a reference (textbook), and a placeholder, which yields a grey text box when the field

is empty.

 Here’s the handleChange() method that prints the values in the console and

updates the state using event.target.value (ch07/uncontrolled/jsx/content.jsx).

class Content extends React.Component {
constructor(props){
super(props)
this.state = {textbook: ''}

Listing 7.7 Uncontrolled element that captures changes

Sets the initial value
to an empty string

157Alternative ways to work with forms

}
handleChange(event) {
console.log(event.target.value)
this.setState({textbook: event.target.value})

}
render() {
return <div>

<input
type="text"
onChange={this.handleChange}
placeholder="Eloquent TypeScript: Myth or Reality" />

{this.state.textbook}

</div>
}

}

The idea is that users can enter whatever they want because React has no control over

the value of the input field. All React is doing is capturing new values (onChange) and

setting the state. The change in state will, in turn, update (see figure 7.11).

 In this approach, you implement an event handler for the input field. Can you skip

capturing events completely?

Updates the state
on each change in
the input field

Doesn’t set the value for
input, only the event listener

Uses to output the
state variable, which you’ll set
in the handleChange() method

Figure 7.10 This uncontrolled component has no value set by the application.

158 CHAPTER 7 Working with forms in React

7.2.2 Uncontrolled elements without capturing changes

Let’s look at a second approach. There’s a problem with having all the values ready

when you want to use them (on form submit, for example). In the approach with

change capturing, you have all the data in states. When you opt to not capture

changes with uncontrolled elements, the data is still in the DOM. To get the data into

a JavaScript object, the solution is to use references, as shown in figure 7.12. Contrast

how uncontrolled elements work in figure 7.12 with the controlled elements flow in

figure 7.1, which shows how controlled elements function.

NOTE When you’re working with controlled components or with uncon-
trolled components that capture data, the data is in the state all the time. This
isn’t the case with the approach discussed in this subsection.

To sum up, in order for the approach of using uncontrolled elements without captur-

ing changes to work, you need a way to access other elements to get data from them.

Figure 7.11 Typing updates the state due to capturing changes, but the value of the DOM text-input element

isn’t controlled.

1. Input

3. Final event

 (submit uncaptured

 changes)

ReactDOM.findDOMNode(this.refs.NAME).value

2. Updated view

ViewUser

Figure 7.12 Using an uncontrolled element without capturing changes and instead accessing values

via references

159Alternative ways to work with forms

7.2.3 Using references to access values

You use references to access values when working with uncontrolled components that

don’t capture events, such as onChange, but the references aren’t exclusive to this par-

ticular pattern. You can use references in any other scenario you see fit, although

using references is frowned on as an antipattern. The reason is that when React ele-

ments are defined properly, with each element using internal state in sync with the

view’s state (DOM), the need for references is almost nonexistent. But you need to

understand references, so I’ll cover them here.

 With references, you can get the DOM element (or a node) of a React.js compo-

nent. This comes in handy when you need to get form element values, but you don’t

capture changes in the elements.

 To use a reference, you need to do two things:

 Make sure the element in the render’s return has the ref attribute with a camel-

Case name (for example, email: <input ref="userEmail" />).

 Access the DOM instance with the named reference in some other method. For

example, in the event handler, this.refs.NAME becomes this.refs.userEmail.

this.refs.NAME will give you an instance of a React component, but how do you get

the value? It’s more useful to have the DOM node! You can access the component’s

DOM node by calling ReactDOM.findDOMNode(this.refs.NAME):

let emailNode = ReactDOM.findDOMNode(this.refs.email)
let email = emailNode.value

I find this method a bit clunky to write (too lengthy), so with this in mind you can use

an alias:

let fD = ReactDOM.findDOMNode
let email = fD(this.refs.email).value

Consider the example shown in figure 7.13, which captures user email addresses and

comments. The values are output to the browser console.

Figure 7.13 Uncontrolled form that gets data from two fields and prints it in logs

160 CHAPTER 7 Working with forms in React

The project structure is very different from other project structures. It looks like this:

/email
/css
bootstrap.css

/js
content.js
react.js
react-dom.js
script.js

/jsx
content.jsx
script.jsx

index.html

When the Submit button is clicked, you can access the emailAddress and comments ref-

erences and output the values to two logs, as shown next (ch07/email/jsx/content.jsx).

class Content extends React.Component {
constructor(props) {
super(props)
this.submit = this.submit.bind(this)
this.prompt = 'Please enter your email to win $1,000,000.'

}
submit(event) {
let emailAddress = this.refs.emailAddress
let comments = this.refs.comments
console.log(ReactDOM.findDOMNode(emailAddress).value)
console.log(ReactDOM.findDOMNode(comments).value)

}

Next, you have the mandatory render() function, which uses the Twitter Bootstrap

classes to style the intake form (ch07/email/jsx/content.jsx). Remember to use

className for the class attribute!

render: function() {
return (

<div className="well">
<p>{this.prompt}</p>
<div className="form-group">

Email: <input ref="emailAddress" className="form-control"

➥ type="text" placeholder="hi@azat.co"/>
</div>
<div className="form-group">

Comments: <textarea ref="comments" className="form-control"

➥ placeholder="I like your website!"/>
</div>
<div className="form-group">

Listing 7.8 Beginning of the email form

Listing 7.9 render() method of the email form

Compiled script with
the main component

ReactDOM.render()
statement in JSX

Defines a class
attribute

Accesses and prints
the value for the
email address
using a reference

Prints the
value of the

prompt
attribute of
the Content
component

Implements the input field for the email, which
has a placeholder element attribute. A

placeholder property is a visual aid to show an
example of what to enter. Uses the className

and ref element attributes.

161Alternative ways to work with forms

<a className="btn btn-primary" value="Submit"

➥ onClick={this.submit}>Submit
</div>

</div>
)

}
})

A regular HTML DOM node for <textarea> uses innerHTML as its value. As mentioned

earlier, in React you can use value for this element:

ReactDOM.findDOMNode(comments).value

This is because React implements the value property. It’s just one of the nice features

you get with a more consistent API for form elements. At the same time, because the

ReactDOM.findDOMNode() method returns a DOM node, you have access to other reg-

ular HTML attributes (like innerHTML) and methods (like getAttribute()).

 Now you know how to access elements and their values from pretty much any com-

ponent method, not just from an event handler for that particular element. Again, ref-

erences are only for the rare cases when you use uncontrolled elements. The overuse

of references is frowned on as a bad practice. Most of the time, you won’t need to use

references with controlled elements, because you can use component states instead.

 It’s also possible to assign a function to the ref attribute in JSX. This function is

called just once, on the mounting of the element. In the function, you can save the

DOM node in an instance attribute this.emailInput:

<input ref={(input) => { this.emailInput = input }}
className="form-control"
type="text"
placeholder="hi@azat.co"/>

Uncontrolled components require less coding (state updates and capturing changes

are optional), but they raise another issue: you can’t set values to states or hardcoded

values because then you’ll have controlled elements (for example, you can’t use

value={this.state.email}). How do you set the initial value? Let’s say the loan

application has been partly filled out and saved, and the user resumes the session. You

need to show the information that has already been filled in, but you can’t use the

value attribute. Let’s look at how you set default values.

7.2.4 Default values

Suppose you want the example loan application to prepopulate certain fields with

existing data. In normal HTML, you define a form field with value, and users can

modify the element on a page. But React uses value, checked, and selected to main-

tain consistency between the view and the internal state of elements. In React, if you

hardcode the value like

<input type="text" name="new-book-title" value="Node: The Best Parts"/>

Code the Submit button with the
onClick event that calls this.submit.

162 CHAPTER 7 Working with forms in React

it’ll be a read-only input field. That isn’t what you need in most cases. Therefore, in

React, the special attribute defaultValue sets the value and lets users modify form

elements.

 For example, assume the form was saved earlier, and you want to fill in the <input>

field for the user. In this case, you need to use the defaultValue property for the

form elements. You can set the initial value of the input field like this:

<input type="text" name="new-book-
title" defaultValue="Node: The Best Parts"/>

If you use the value attribute (value="JSX") instead of defaultValue, this element

becomes read-only. Not only will it be controlled, but the value won’t change when the

user types in the <input> element, as shown

in figure 7.14. This is because the value is

hardcoded, and React will maintain that

value. Probably not what you want. Obviously,

in real-life applications, you get values pro-

grammatically, which in React means using

properties (this.props.name)

<input type="text" name="new-book-title" defaultValue={this.props.title}/>

or states:

<input type="text" name="new-book-title" defaultValue={this.state.title}/>

The defaultValue React feature is most often used with uncontrolled components;

but, as with references, default values can be used with controlled components or in

any other scenario. You don’t need default values as much in controlled components

because you can define those values in the state in the constructor; for example,

this.state = { defaultName: 'Abe Lincoln'}.

 As you’ve seen, most UI work is done in handy form elements. You need to make

them beautiful, yet easy to understand and use. And you must also have user-friendly

error messages, front-end validation, and other nontrivial things like tooltips, scalable

radio buttons, default values, and placeholders. Building a UI can be complicated and

can quickly spiral out of control! Fortunately, React makes your job easier by letting

you use a cross-browser API for form elements.

7.3 Quiz

1 An uncontrolled component sets a value, and a controlled component doesn’t.

True or false?

2 The correct syntax for default values is which of the following? default-value,

defaultValue, or defVal

3 The React team recommends using onChange over onInput. True or false?

Figure 7.14 The value of an <input>

element appears frozen (unchangeable) on a

web page when you set the value to a string.

163Quiz answers

4 You set a value for the text area with which of the following? Children, inner

HTML, or value

5 In a form, selected applies to which of the following? <input>, <textarea>, or

<option>

6 Which of the following is the best way to extract the DOM node by reference?

React.findDomNode(this.refs.email), this.refs.email, this.refs.email

.getDOMNode, ReactDOM.findDOMNode(this.refs.email), or this.refs.email

.getDomNode

7.4 Summary

 The preferred approach for forms is to use controlled components with event

listeners capturing and storing data in the state.

 Using uncontrolled components with or without capturing changes is a hack

and should be avoided.

 References and default values can be used with any elements but usually aren’t

needed when components are controlled.

 React’s <textarea> uses a value attribute, not inner content.

 this.refs.NAME is a way to access class references.

 defaultValue allows you to set the initial view (DOM) value for an element.

 ref="NAME" is how you define references.

7.5 Quiz answers

1False. The definition of a controlled component/element is that it sets the value.

2defaultValue. The other options are invalid names.

3True. In regular HTML, onChange might not fire on every change, but in React it

always does.

4In React, you set a value with value for consistency. But in vanilla HTML, you use

inner HTML.

5<option>.

6Use ReactDOM.findDOMNode(reference) or a callback (not listed as an answer).

164

Scaling
 React components

Thus far, we’ve covered how to create components and make them interactive, and

work with user input (events and input elements). Using this knowledge will take

you a long way in building sites with React components, but you’ll notice that cer-

tain annoyances keep cropping up. This is especially true for large projects when

you rely on components created by other software engineers (open source contrib-

utors or your teammates).

 For example, when you consume a component someone else wrote, how do you

know whether you’re providing the right properties for it? Also, how can you use an

existing component with a little added functionality (which is also applied to other

This chapter covers

 Setting default properties for components

 Understanding React property types and validation

 Rendering children

 Creating higher-order components for code reuse

 Best practices: presentational versus container

components

Watch this chapter’s introduction video by

scanning this QR code with your phone or going

to http://reactquickly.co/videos/ch08.

165Default properties in components

components)? These are developmental scalability issues: how to scale your code, mean-

ing how to work with your code when the code base grows larger. Certain features and

patterns in React can help with that.

 These topics are important if you’d like to learn how to effectively build a complex

React application. For example, higher-order components allow you to enhance the

functionality of a component, and property types provide the security of type check-

ing and no small measure of sanity.

 By the end of this chapter, you’ll be familiar with most features of React. You’ll

become adept at making your code more developer friendly (using property types)

and your work more efficient (using component names and higher-order compo-

nents). Your teammates may even marvel at your elegant solutions. These features will

help you use React effectively, so let’s dive in without further ado.

NOTE The source code for the examples in this chapter is at www.manning
.com/books/react-quickly and https://github.com/azat-co/react-quickly/
tree/master/ch08 (in the ch08 folder of the GitHub repository
https://github.com/azat-co/react-quickly). You can also find some demos at
http://reactquickly.co/demos.

8.1 Default properties in components

Imagine that you’re building a Datepicker component that takes a few required prop-

erties such as number of rows, locale, and current date:

<Datepicker currentDate={Date()} locale="US" rows={4}/>

What will happen if a new team member tries to use your component but forgets to

pass the essential currentDate property? Then, what if another coworker passes a "4"

string instead of a 4 number? Your component will do nothing (values undefined) or

worse: it may crash, and they may blame you (ReferenceError anyone?). Oops.

 Sadly, this isn’t an uncommon situation in web development, because JavaScript is

a loosely typed language. Fortunately, React provides a feature that lets you set default

values for properties: the defaultProps static attribute. We’ll return to flagging issues

with property types in the next section.

 The key benefit of defaultProps is that if a property is missing, a default value is ren-

dered. To set a default property value on the component class, you define default-

Props. For example, in the aforementioned Datepicker component definition, you

can add a static class attribute (not an instance attribute, because that won’t work—

instance attributes are set in constructor()):

class Datepicker extends React.Component {
...

}
Datepicker.defaultProps = {

currentDate: Date(),
rows: 4,
locale: 'US'

}

166 CHAPTER 8 Scaling React components

To illustrate defaultProps further, let’s say you have a component that renders a but-

ton. Typically, buttons have labels, but those labels need to be customizable. In case

the custom value is omitted, it’s good to have a default value.

 The button’s label is the buttonLabel property, which you use in render()’s

return attribute. You want this property to always include Submit, even if the value

isn’t set from above. To do this, you implement the defaultProps static class attribute,

which is an object containing the property buttonLabel with a default value:

class Button extends React.Component {
render() {
return <button className="btn" >{this.props.buttonLabel}</button>

}
}
Button.defaultProps = {buttonLabel: 'Submit'}

The parent component Content renders four buttons. But three of these four button

components are missing properties:

class Content extends React.Component {
render() {
return (

<div>
<Button buttonLabel="Start"/>
<Button />
<Button />
<Button />

</div>
)

}
}

Can you guess the result? The first button will have the label Start, and the rest of the

buttons will have the label Submit (see figure 8.1).

 Setting default property values is almost always a good idea, because doing so

makes your components more fault tolerant. In other words, your components

become smarter because they have a baseline look and behavior even when nothing is

supplied.

Figure 8.1 The first button has a label that’s set on creation. The other elements don’t

and thus fall back to the default property value.

167React property types and validation

Looking at it another way, having a default value means you can skip declaring the

same old value over and over again. If you use a single property value most of the time

but still want to provide a way to modify this value (override the default), the

defaultProps feature is the way to go. Overriding a default value doesn’t cause any

issues, as you saw with the first button element in the example.

8.2 React property types and validation

Going back to the earlier example with the Datepicker component and coworkers

who aren’t aware of property types ("5" versus 5), you can set property types to use

with React.js component classes. You do so via the propTypes static attribute. This fea-

ture of property types doesn’t enforce data types on property values and instead gives

you a warning. That is, if you’re in development mode, and a type doesn’t match,

you’ll get a warning message in the console and in production; nothing will be done

to prevent the wrong type from being used. In essence, React.js suppresses this warn-

ing in production mode. Thus, propTypes is mostly a convenience feature to warn you

about mismatches in data types at a developmental stage.

For React 15.5 and later versions (most of the examples in this book use React v15.5),

type definitions come from a separate package called prop-types (www.npmjs.com/

package/prop-types). You need to include prop-types in your HTML file. The pack-

age will become a global object (window.PropTypes):

<!-- development version -->
<script src="https://unpkg.com/prop-types/prop-types.js"></script>

<!-- production version -->
<script src="https://unpkg.com/prop-types/prop-types.min.js"></script>

If you’re using React 15.4 and earlier, there’s no need to include prop-types, because

the types are in React: React.propTypes.

 Here’s a basic example of defining a static propTypes attribute on a Datepicker

class with types string, number, and enumerator. The example uses React v15.5 and

includes prop-types in HTML (not shown here):

Production vs. development React

The React.js team defines development mode as using the unminified (uncom-

pressed) version of React and production mode as using the minified version. From

the React authors:

We provide two versions of React: an uncompressed version for development

and a minified version for production. The development version includes

extra warnings about common mistakes, whereas the production version

includes extra performance optimizations and strips all error messages.

168 CHAPTER 8 Scaling React components

class Datepicker extends React.Component {
...

}
Datepicker.propTypes = {

currentDate: PropTypes.string,
rows: PropTypes.number,
locale: PropTypes.oneOf(['US', 'CA', 'MX', 'EU'])

}

WARNING Never rely on front-end user-input validation, because it can be
easily bypassed. Use it only for a better UX, and check everything on the
server side.

To validate property types, use the propTypes property with the object containing the

properties as keys and types as values. React.js types are in the PropTypes object:

To demonstrate, let’s enhance the defaultProps example by adding some property

types in addition to default property values. The structure of this project is similar:

content.jsx, button.jsx, and script.jsx. The index.html file has a reference to prop-

types.js:

<!DOCTYPE html>
<html>

<head>
<script src="js/react.js"></script>
<script src="js/prop-types.js"></script>
<script src="js/react-dom.js"></script>
<link href="css/bootstrap.css" type="text/css" rel="stylesheet"/>
<link href="css/style.css" type="text/css" rel="stylesheet"/>

</head>

<body>
<div id="content" class="container"></div>
<script src="js/button.js"></script>
<script src="js/content.js"></script>
<script src="js/script.js"></script>

</body>

</html>

 PropTypes.string

 PropTypes.string

 PropTypes.number

 PropTypes.bool

 PropTypes.object

 PropTypes.array

 PropTypes.func

 PropTypes.shape

 PropTypes.any.isRequired

 PropTypes.objectOf(PropTypes.number)

 PropTypes.arrayOf(PropTypes.number)

 PropTypes.node

 PropTypes.instanceOf(Message)

 PropTypes.element

 PropTypes.oneOfType([PropTypes.number, ...])

window.PropTypes
because the script
includes prop-types.js

169React property types and validation

Let’s define a Button class with an optional title with a string type. To implement

it, you define a static class attribute (a property of that class) propTypes with key title

and PropTypes.string as a value of that key. This code goes into button.js:

Button.propTypes = {
title: PropTypes.string

}

You can also require properties. To do so, add isRequired to the type. For example,

the title property is mandatory and of type string:

Button.propTypes = {
title: PropTypes.string.isRequired

}

This button also requires a handler property, which must have a function as a value.

(Last time I checked, buttons without actions were useless.)

Button.propTypes = {
handler: PropTypes.func.isRequired

}

What’s also nice is that you can define your own custom validation. To implement cus-

tom validation, all you need to do is create an expression that returns an instance of

Error. Then, you use that expression in propTypes: {..} as the value of the property.

For example, the following code validates the email property with the regex from

emailRegularExpression (which I copied from the internet—that means it has to be

correct, right?):1

...
propTypes = {

email: function(props, propName, componentName) {
var emailRegularExpression =

/^([\w-]+(?:\.[\w-]+)*)@((?:[\w-]+\.)*\w[\w-]{0,66})\.([a-z]{2,6}(?:\.

➥ [a-z]{2})?)$/i
if (!emailRegularExpression.test(props[propName])) {

return new Error('Email validation failed!')
}

}
}
...

Now let’s put everything together. The Button component will be called with and with-

out a property title (string) and a handler (required function). The following listing

1 There are many versions of the email regex, depending on strictness, domain zones, and other criteria.
See “Email Address Regular Expression That 99.99% Works,” http://emailregex.com; “Validate email
address in JavaScript?” (question on Stack Overflow), http://mng.bz/zm37; and Regular Expression Library,
http://regexlib.com/Search.aspx?k=email.

170 CHAPTER 8 Scaling React components

(ch08/prop-types) uses property types to ensure that handler is a function, title is a

string, and email adheres to the provided regular expression.

class Button extends React.Component {
render() {
return <button className="btn">{this.props.buttonLabel}</button>

}
}

Button.defaultProps = {buttonLabel: 'Submit'}

Button.propTypes = {
handler: PropTypes.func.isRequired,
title: PropTypes.string,
email(props, propName, componentName) {
let emailRegularExpression =
/^([\w-]+(?:\.[\w-]+)*)@((?:[\w-]+\.)*\w[\w-]{0,66})\.([a-z]{2,6}(?:\.

➥ [a-z]{2})?)$/i
if (!emailRegularExpression.test(props[propName])) {

return new Error('Email validation failed!')
}

}
}

Next, let’s implement the parent component Content, which renders six buttons to test

the warning messages produced from property types (ch08/prop-types/jsx/content.jsx).

class Content extends React.Component {
render() {
let number = 1
return (

<div>
<Button buttonLabel="Start"/>
<Button />
<Button title={number}/>
<Button />
<Button email="not-a-valid-email"/>
<Button email="hi@azat.co"/>

</div>
)

}
}

Running this code results in three warning messages being displayed on your

console (don’t forget to open it); mine are shown here and in figure 8.2. The first

Listing 8.1 Using propTypes and defaultProps

Listing 8.2 Rendering six buttons

Requires a handler
with a function value

Defines the optional title
property with a string value

Defines an email validation with a regular expression

Triggers a warning that
there’s no handler

Triggers a
warning

that title
must be a

string

Triggers a warning about
the wrong email format

171React property types and validation

warning is about the handler function that must be specified, which I omitted in a

few buttons:

Warning: Failed propType: Required prop `handler` was not specified in
`Button`. Check the render method of `Content`.

The second warning is about the wrong email format for the fourth button:

Warning: Failed propType: Email validation failed! Check the render method
of `Content`.

The third warning is about the wrong type for the title, which should be a string (I

provided a number for one button):

Warning: Failed propType: Invalid prop `title` of type `number` supplied to
`Button`, expected `string`. Check the render method of `Content`.

The interesting thing is that more than one button is missing handler, but you see only

one warning. React warns about each property only once per single render() of Content.

 What I love about React is that it tells you what parent component to check. It’s

Content in the example. Imagine if you had hundreds of components. This is useful!

Figure 8.2 Warnings due to wrong property types

172 CHAPTER 8 Scaling React components

Conveniently, if you expand the message in DevTools, you can spot a line number for

the Button element that’s causing trouble and that resulted in the warning. In figure

8.3, I first expanded the message and then located my file (content.js). The message

said that the issue was on line 9.

 By clicking content.js:9 in the console, you can open the Source tab at that line,

as shown in figure 8.4. It clearly shows what’s to blame:

React.createElement(Button, { title: number }),

You don’t need source maps (although you’ll set them up and use them in part 2 of

the book) to know that the third button is causing the problem.

NOTE I’ll repeat it again: only the unminified or uncompressed version (that
is, development mode) of React shows these warnings.

1. Click to expand. 2. Click on content.js:9.

Figure 8.3 Expanding a warning revealed the problematic line number: 9.

173React property types and validation

Try playing with the property types and validation. It’s a neat feature. Consider that

this code uses the same Button component as before:

<Button title={number}/>

Can you spot the problem? How many warnings do you think you’ll get? (Hint: handler

and title properties.)

The message identified line 9
as the problem in content.js.

Figure 8.4 Inspecting the compiled source code is often enough to understand the problem.

Source maps

I got the warnings shown in figure 8.2 because of the poorly written Content (I wrote

it that way on purpose, to show how defaultProps and propTypes work). The warn-

ing messages identify the component and where in the component the problem is

happening.

But the line numbers won’t match your source code, because they refer to compiled

JavaScript, not JSX. To get the correct line numbers, you’ll need to use a source-map plug-

in like source-map-support (https://github.com/evanw/node-source-map-support) or

Webpack. Chapter 12 discusses Webpack.

174 CHAPTER 8 Scaling React components

It’s important to know and use propTypes (property types and custom validation) in

large projects or open source components. Of course, property types don’t have

strict enforcement or error exceptions, but the benefit is that when you use someone

else’s component, you can verify that the supplied properties are of the right type.

Same applies when other software engineers use your components. They’ll appreci-

ate that you provided correct property types. That leads to a better developer experi-

ence for everyone!

 Finally, there are many additional types and helper methods. To see the full refer-

ence, please refer to the documentation at http://mng.bz/4Lep.

8.3 Rendering children

Let’s continue with the fictional React project; but instead of a Datepicker (which is

now robust and warns you about any missing or incorrect properties), you’re tasked with

creating a component that’s universal enough to use with any children you pass to it. It’s

a blog post Content component that may consist of a heading and a paragraph of text:

<Content>
<h1>React.js</h1>
<p>Rocks</p>

</Content>

Another blog post may consist of an image (think Instagram or Tumblr):

<Content>

</Content>

Both posts use Content, but they pass different children to it. Wouldn’t it be great to

have a special way to render any children (<p> or)? Meet children.

 The children property is an easy way to render all children with

{this.props.children}. You can also do more than rendering. For example, add a

<div> and pass along child elements:

class Content extends React.Component {
render() {
return (

<div className="content">
{this.props.children}

</div>
)

}
}

(continued)

You can get support for source maps with pure non-Webpack Babel by adding

--sourceMaps=true to the command and/or the package.json build script. For more

Babel options, see https://babeljs.io/docs/usage/options/#options.

175Rendering children

The parent of Content has the children <h1> and <p>:

ReactDOM.render(
<div>
<Content>

<h1>React</h1>
<p>Rocks</p>

</Content>
</div>,
document.getElementById('content')

)

The end result is that <h1> and <p> are wrapped in the <div> container with a content

class, as shown in figure 8.5. Remember, for class attributes, you use className in

React.

 Obviously, you can add many more things to a component like Content; for exam-

ple, more classes for styling, layouts, and even access properties and interactivity with

events and states. With this.props.children, you can create pass-through compo-

nents that are flexible, powerful, and universal.

Figure 8.5 Rendering a single Content component with a heading and paragraph using this.props

.children, which shows two items

176 CHAPTER 8 Scaling React components

Let’s say you need to display a link or a button in addition to text and images, as

shown in the previous example. The Content component will still be the wrapper

<div> with the CSS class content (className property), but now there will be more

different children. The benefit is that Content can be children-agnostic.2 You don’t

need to change the Content class.

 Put the children in Content when you instantiate the class (ch08/children/

jsx/script.jsx).

ReactDOM.render(
<div>
<Content>

<h1>React</h1>
<p>Rocks</p>

</Content>
<Content>

</Content>
<Content>

http://react.rocks
</Content>
<Content>

<a className="btn btn-danger"

➥ href="http://react.rocks">http://react.rocks
</Content>

</div>,
document.getElementById('content')

)

The resulting HTML will have two <div> elements with content CSS classes. Your layouts!

One will have <h1> and <p> and the other will have , as shown in DevTools in

figure 8.6.

 What’s interesting about the children property is that it can be an array if there’s

more than one child element (as seen in figure 8.5). You can access individual ele-

ments like this:

{this.props.children[0]}
{this.props.children[1]}

Be careful when validating children. When there’s only one child element,

this.props.children isn’t an array. If you use this.props.children.length and the

single child node is a string, this can lead to bugs because length is a valid string prop-

erty. Instead, use React.Children.count(this.props.children) to get an accurate

count of child elements.

2 “Agnostic, in an information technology (IT) context, refers to something that is generalized so that it is
interoperable among various systems.” From http://whatis.techtarget.com/definition/agnostic.

Listing 8.3 Rendering elements using Content

177Creating React higher-order components for code reuse

React has other helpers like React.Children.count. The most interesting (in my

opinion) are these:

 React.Children.map()
 React.Children.forEach()
 React.Children.toArray()

There’s no reason to duplicate the ever-changing list; you can find the official docu-

mentation at http://mng.bz/Oi2W.

8.4 Creating React higher-order components for code reuse

We’ll continue to suppose that you work on a large team and create components that

other developers use in their projects. Let’s say you’re working on a piece of an inter-

face. Three of your teammates ask you to implement a way to load a resource (the

React.js website), but each of them wants to use their own visual representation for the

button, image, and link. Perhaps you could implement a method and call it from an

event handler, but there’s a more elegant solution: higher-order components.

 A higher-order component (HOC) lets you enhance a component with additional

logic (see figure 8.7). You can think of this pattern as components inheriting func-

tionality when used with HOCs. In other words, HOCs let you reuse code. This allows you

and your team to share functionality among React.js components. By doing so, you

can avoid repeating yourselves (DRY, http://mng.bz/1K5k).

Figure 8.6 Rendering four elements with different content using a single component class

178 CHAPTER 8 Scaling React components

In essence, HOCs are React component classes that render the original classes while

adding extra functionality along the way. Defining an HOC is straightforward, because

it’s only a function. You declare it with a fat arrow:

const LoadWebsite = (Component) => {
...

}

The name LoadWebsite is arbitrary; you can name the HOC anything, as long as you

use the same name when you enhance a component. The same is true for the argu-

ment to the function (LoadWebsite); it’s the original (not yet enhanced) component.

 To demonstrate, let’s set up a project for your three coworkers. The project

structure is as follows, with three stateless components, Button, Link, and Logo in

elements.jsx, and the HOC function in load-website.jsx:

/hi-order
/css
bootstrap.css
style.css

/js
content.js
elements.js
load-website.js
react.js
react-dom.js
script.js

/jsx
content.jsx
elements.jsx
load-website.jsx
script.jsx

index.html
logo.png

Your coworkers need a label and a click event handler. Let’s set the label and define the

handleClick() method. The mounting events demonstrate the component lifecycle

(ch08/hi-order/jsx/load-website.jsx).

HOC function

A A + B

Original component Enhanced component

B

Figure 8.7 Simplified representation of the higher-order component pattern,

where an enhanced component has properties not just of A but of A and B

179Creating React higher-order components for code reuse

const LoadWebsite = (Component) => {
class _LoadWebsite extends React.Component {
constructor(props) {

super(props)
this.state = {label: 'Run'}
this.state.handleClick = this.handleClick.bind(this)

}
getUrl() {

return 'https://facebook.github.io/react/docs/top-level-api.html'
}
handleClick(event) {

var iframe = document.getElementById('frame').src =
this.getUrl()

}
componentDidMount() {

console.log(ReactDOM.findDOMNode(this))
}
render() {

console.log(this.state)
return <Component {...this.state} {...this.props} />

}
}
_LoadWebsite.displayName = 'EnhancedComponent'
return _LoadWebsite

}

Nothing complex, right? There are two new techniques not covered previously in this

book: displayName and the spread operator Let’s quickly (as the title of this book

suggests) examine them now.

8.4.1 Using displayName: distinguishing child components from their parent

By default, JSX uses the class name as the name of the instance (element). Thus ele-

ments created with an HOC in the example have _LoadWebsite names.

Listing 8.4 Implementing a higher-order component

Make sure that in this
method, “this” is

always an instance of
this component.

Could be a const string because there’s no
need for an instance of “this,” but this
approach keeps the component self-sufficient

Loads the
React website
into an iframe

Passes state and
props as properties
using spread

Defines a display
name for the HOC

Underscore in JavaScript

In JavaScript, an underscore (_) is a valid character for a name (the Lodash and

Underscore libraries use it). In addition, an underscore as the start of a name of a

variable or method typically means it’s a private attribute, variable, or method that

isn’t intended for use as a public interface (for example, by another module, class,

object, function, and so on). Using private APIs is highly discouraged because they’re

likely to change more often and contain undocumented behavior.

180 CHAPTER 8 Scaling React components

When you want to change this name, there’s the displayName static attribute. As you

may know, static class attributes in ES6 must be defined outside of the class definition.

(As of this writing, the standard for static attributes hasn’t been finalized.)

 To sum up, displayName is necessary to set React element names when they need

to be different from the component class name, as shown in figure 8.8. You can see

how useful it is to use displayName in the load-website.jsx HOC to augment the name,

because by default the component name is the function name (which may not always

be the name you want).

(continued)

An underscore at the beginning of a name is a convention, meaning it’s not enforced

by the engine or platform. It’s solely a common pattern used and recognized by

JavaScript software engineers. In other words, methods and variables don’t become

private automatically when _ is used in their names. To make a variable/method private,

use a closure. See http://developer.mozilla.org/en/docs/Web/JavaScript/Closures

and http://javascript.crockford.com/private.html.

Without
displayName

With displayName

Figure 8.8 By using the displayName static attribute, you can change the name of the component

from _LoadWebsite to EnhancedComponent.

181Creating React higher-order components for code reuse

8.4.2 Using the spread operator: passing all of your attributes

Next, let’s look at the spread operator (...). It’s part of ES6+/ES2015+ for arrays

(http://mng.bz/8fjN); as of the time of this writing, there’s a proposal to use spreads

for objects (https://github.com/sebmarkbage/ecmascript-rest-spread). It’s only natu-

ral that the React team added support for spreads to JSX.

 The idea isn’t complicated. The spread operator lets you pass all the attributes of

an object (obj) as properties when used in the element:

<Component {...obj}/>

You used spread in load-website.jsx to pass state and property variables to the original

component when you were rendering it. You needed it because you didn’t know ahead

of time all the properties the function would take as arguments; thus, the spread oper-

ator is a blanket statement to pass all of your data (in that variable or an object).

 In React and JSX, you can have more than one spread operator or mix them with

traditional key=value property declarations. For example, you can pass all states and

all properties from a current class as well as className to a new element Component:

<Component {...this.state} {...this.props} className="main" />

Let’s consider an example with children. In this scenario, using the spread operator

with this.props will pass all the properties of DoneLink to the anchor element <a>:

class DoneLink extends React.Component {
render() {
return <a {...this.props}>

{this.props.children}

}
}

ReactDOM.render(
<DoneLink href="/checked.html">
Click here!

</DoneLink>,
document.getElementById('done-link')

)

In the HOC, you pass all properties and states to the original component when you

render it. By doing so, you don’t have to manually add properties to or remove them

from render() each time you want to pass something new or stop passing existing

data from Content, where you instantiate LoadWebsite/EnhancedComponent for each

original element.

8.4.3 Using higher-order components

You’ve learned more about displayName and ... in JSX and React. Now we can look

at how to use HOCs.

Takes any properties
passed to DoneLink and
copies them to <a>

Uses Glyphicons
(http://glyphicons.com)
to render a check icon

Passes the
value for href

182 CHAPTER 8 Scaling React components

 Let’s go back to Content and content.jsx, where you’re using LoadWebsite. After

defining the HOC, you need to create components using it in content.jsx:

const EnhancedButton = LoadWebsite(Button)
const EnhancedLink = LoadWebsite(Link)
const EnhancedLogo = LoadWebsite(Logo)

Now, you’ll implement three components—Button, Link, and Logo—to reuse the code

with the HOC pattern. The Button component is created via LoadWebsite and as a result

magically inherits its properties (this.props.handleClick and this.props.label):

class Button extends React.Component {
render() {
return <button

className="btn btn-primary"
onClick={this.props.handleClick}>
{this.props.label}

</button>
}

}

The Link component is created by the HOC, which is why you can also use handle-

Click and label properties:

class Link extends React.Component {
render() {
return

➥ {this.props.label}
}

}

And finally, the Logo component also uses the same properties. You guessed it: they’re

magically there because you used a spread operator when you created Logo in

content.jsx:

class Logo extends React.Component {
render() {
return <img onClick={this.props.handleClick} width="40" src="logo.png"

➥ href="#"/>
}

}

The three components have different renderings, but they all get this.props

.handleClick and this.props.label from LoadWebsite. The parent component

Content renders the elements as shown in the following listing (ch08/hi-order/

jsx/content.jsx).

const EnhancedButton = LoadWebsite(Button)
const EnhancedLink = LoadWebsite(Link)
const EnhancedLogo = LoadWebsite(Logo)

Listing 8.5 HOCs sharing an event handler

183Creating React higher-order components for code reuse

class Content extends React.Component {
render() {
return (

<div>
<EnhancedButton />

<EnhancedLink />

<EnhancedLogo />

<iframe id="frame" src="" width="600" height="500"/>

</div>
)

}
}

Finally, let’s not forget to render Content on the last lines of script.jsx:

ReactDOM.render(
<Content />,
document.getElementById('content')

)

When you open the page, it has the three elements (Button, Link, and Logo). The ele-

ments have the same functionality: they load the IFrame when a click happens, as

shown in figure 8.9.

Declares the iframe in
which the click method

loads the React site

1. Click any of the three elements. 2. The website loads.

Figure 8.9 All three components load the React website, thanks to the function that provides the code

to load it.

184 CHAPTER 8 Scaling React components

As you’ve seen, HOCs are great for abstracting code. You can use them to write your own

mini-modules, which are reusable React components. HOCs, along with property types,

are excellent tools for creating developer-friendly components that others will love to use.

8.5 Best practices: presentational vs. container components

There’s a distinction that lets you scale your React code in terms of code and team

size: presentational versus container components. We’ve touched on them in previous

chapters, but now, because you know about passing children and HOCs, it’ll be easier

to reason about container components.

 Generally speaking, splitting your code into two types makes it simpler and more

maintainable. Presentational components typically only add structure to DOM and

styling. They take properties but often don’t have their own states. Most of the time,

you can use functions for stateless presentational components. For example, Logo is a

good illustration of a presentational component in a class style

class Logo extends React.Component {
render() {
return <img onClick={this.props.handleClick} width="40" src="logo.png"

➥ href="#"/>
}

}

or in a functional style:

const Logo = (props)=>{
return <img onClick={props.handleClick} width="40" src="logo.png"

➥ href="#"/>
}

Presentational components often use this.props.children when they act as wrap-

pers to style child components. Examples are Button, Content, Layout, Post, and so

on. But they rarely deal with data or states; that’s the job of container components.

 Container components are often generated by HOCs to inject data sources. They

have states. Examples are SaveButton, ImagePostContent, and so on. Both presenta-

tional and container components can contain other presentational or container com-

ponents; but when you’re starting out, you’ll generally use presentational components

containing only other presentational components. Container components contain

either other container components or presentational ones.

 The best approach is to start with components that solve your needs. If you begin

to see repeating patterns or properties that you’re passing over multiple layers of

nested components but aren’t using in the interim components, introduce a con-

tainer component or two.

NOTE You may hear terms such as dumb or skinny and smart or fat compo-
nents. These are synonyms for presentational and container components,
with the latter being more recent additions to React terminology.

185Quiz answers

8.6 Quiz

1 React provides robust validation, which eliminates the necessity to check input

on the server side. True or false?

2 In addition to setting properties with defaultProps, you can set them in

constructor using this.prop.NAME = VALUE. True or false?

3 The children property can be an array or a node. True or false?

4 A higher-order component pattern is implemented via a function. True or false?

5 The main difference between the minified development and unminified pro-

duction versions of the React library file is that the minified version has warn-

ings and the unminified version has optimized code. True or false?

8.7 Summary

 You can define a default value for any component property by setting the com-

ponent’s defaultProps attribute.

 You can enforce validation checks on component property values while working

with the uncompressed, development version of the React library.

 You can check the type of a property, set it to isRequired so it’s mandatory, or

define your own custom validation, as required.

 If a property value fails validation, a warning appears in your browser’s console.

 The minified, production version of the React library doesn’t include these val-

idation checks.

 React allows you to encapsulate and reuse common properties, methods, and

events among your components by creating higher-order components.

 Higher-order components are defined as functions that take another component

as an argument. This argument is the component inheriting from the HOC.

 Any HTML or React components nested within a JSX element can be accessed

through the props.children property of the parent component.

8.8 Quiz answers

1False. Front-end validation isn’t a substitute for back-end validation. Front-end

code is exposed to anyone, and anyone can bypass it by reverse-engineering how

the front-end app communicates with the server and send any data directly to the

server.

2False. React needs defaultProps as a static class field/attribute when an element

is created, but this.props is an instance attribute.

3True. If there’s only one child, then this.props.children is a single node.

4True. The HOC pattern is implemented as a function that takes a component and

creates another component class with enhanced functionality. This new class ren-

ders the original component while passing properties and states to it.

5True. The minified version doesn’t show warnings.

186

Project:
 Menu component

The next three chapters will walk you through several projects, gradually building

on the concepts you’ve learned in chapters 1–8. These projects will also reinforce

the material by repeating some of the techniques and ideas that are most impor-

tant in React. The first project is minimal, but don’t skip it.

 Imagine that you’re working on a unified visual framework that will be used in

all of your company’s apps. Having the same look and feel in various apps is impor-

tant. Think about how Twitter Bootstrap for many Twitter apps and Google’s Mate-

rial UI1 are used across many properties that belong to Google: AdWords, Analytics,

Search, Drive, Docs, and so on.

This chapter covers

 Understanding the project structure and scaffolding

 Building the Menu component without JSX

 Building the Menu component in JSX

1 Twitter Bootstrap: http://getbootstrap.com. React components that implement Twitter Bootstrap:
https://react-bootstrap.github.io. Google Material Design: https://material.io. React Components that
implement Material Design: www.material-ui.com.

Watch this chapter’s introduction video by

scanning this QR code with your phone or going

to http://reactquickly.co/videos/ch09.

187Project structure and scaffolding

 Your first task is to implement a

menu like the one shown in figure 9.1.

It will be used in the layout’s header

across many pages in various applica-

tions. The menu items need to change

based on the user role and what part of

the application is currently being

viewed. For example, admins and man-

agers should see a Manage Users menu

option. At the same time, this layout

will be used in a customer-relationship app that needs its own unique set of menu

options. You get the idea. The menu needs to be generated dynamically, meaning

you’ll have some React code that generates menu options.

 For simplicity, the menu items will just be <a> tags. You’ll create two custom React

components, Menu and Link, in a way that’s similar to the way you created the Hello-

World component in chapter 1—or how you create any component, for that matter.

 This project will show you how to render programmatically nested elements. Man-

ually hardcoding menu items isn’t a great idea; what happens when you need to

change an item? It’s not dynamic! You’ll use the map() function to do this.

NOTE To follow along with the project, you’ll need to download the unminified
version of React (so that you can take advantage of the helpful warnings it
returns if something goes wrong). You can also download and install Node.js and
npm. They aren’t strictly necessary for this project, but they’re useful for compil-
ing JSX later in this chapter. Appendix A covers the installation of both tools.

NOTE The source code for the examples in this chapter is at www.manning
.com/books/react-quickly and https://github.com/azat-co/react-quickly/
tree/master/ch09 (in the ch09 folder of the GitHub repository https://
github.com/azat-co/react-quickly). You can also find some demos at http://
reactquickly.co/demos.

9.1 Project structure and scaffolding

Let’s start with an overview of the project structure. It’s flat, to keep it simple:

/menu
index.html
package.json
react-dom.js
react.js
script.js

Keep in mind that this is what you’ll have by the end of this walk-through. You should begin

with an empty folder. So, let’s create a new folder and start implementing the project:

$ mkdir menu
$ cd menu

Main HTML file

Main script

Figure 9.1 The menu you’re going to build

188 CHAPTER 9 Project: Menu component

Download react.js and react-dom.js version 15, and drop them into the folder.

 Next is the HTML file:

<!DOCTYPE html>
<html>

<head>
<script src="react.js"></script>
<script src="react-dom.js"></script>

</head>

The HTML for this project is very basic. It includes the react.js and react-dom.js files,

which, for simplicity, are in the same folder as the HTML file. Of course, later you’ll

want to have your *.js files in some other folder, like js or src.

 The body has just two elements. One element is a <div> container with the ID

menu; this is where the menu will be rendered. The second element is a <script> tag

with your React application code:

<body>
<div id="menu"></div>
<script src="script.js"></script>

</body>
</html>

You’re finished with the scaffolding. This is the foundation on which you’ll build the

menu—first, without JSX.

9.2 Building the menu without JSX

script.js is your main application file. It contains ReactDOM.render() as well as two

components (ch09/menu/script.js).

class Menu extends React.Component {...}

class Link extends React.Component {...}

ReactDOM.render(
React.createElement(
Menu,
null

),
document.getElementById('menu')

)

Of course, it’s possible to make Menu dependent on an external list of menu items,

provided in a property such as menuOptions that’s defined elsewhere:

const menuOptions = [...]
//...
ReactDOM.render(

React.createElement(

Listing 9.1 Basic skeleton of the Menu script

Defines Menu

Defines Link, which
is used by Menu

Don’t pass any
props to Menu.

189Building the menu without JSX

Menu,
{menus: menuOptions}

),
document.getElementById('menu')

)

These two approaches are both valid, and you’ll need to choose one depending on

your answer to this question: do you want Menu to be just about structure and styling or

also about getting information? We’ll continue with the latter approach in this chap-

ter and make Menu self-sustained.

9.2.1 The Menu component

Now to create the Menu component. Let’s step through the code. To create it, you

extend React.Component():

class Menu extends React.Component {...}

The Menu component will render the individual menu items, which are link tags.

Before you can render them, you need to define the menu items. They’re hardcoded

in the menus array as follows (you could get them from a data model, store, or server

in a more complex scenario):

render() {
let menus = ['Home',

'About',
'Services',
'Portfolio',
'Contact us']
//...

Next, you’ll return the menu Link elements (four of them). Recall that return can

have only one element. For this reason, you wrap <div> around the four links. This is

the start of the wrapper <div> element with no attributes:

return React.createElement('div',
null,
//... we will render links later

It’s worth mentioning that {} can output not just a variable or an expression, but an

array as well. This comes in handy when you have a list of items. Basically, to render

every element of an array, you can pass that array to {}. Although JSX and React can

output arrays, they don’t output objects. So, the objects must be converted to an array.

 Knowing that you can output an array, you can proceed to generate an array of

React elements. The map() function is a good method to use because it returns an

array. You can implement map() so that each element is the result of the expression

React.createElement(Link, {label: v}) wrapped in <div>. In this expression, v is a

value of the menus array item (Home, About, Services, and so on), and i is its index

number (0, 1, 2, 3, and so on):

Mock data store

190 CHAPTER 9 Project: Menu component

menus.map((v, i) => {
return React.createElement('div',

{key: i},
React.createElement(Link, {label: v})

)
}

)
)

}})

Did you notice that the key property is set to the index i? This is needed so React can

access each <div> element in a list more quickly. If you don’t set key, you’ll see the fol-

lowing warning (at least, in React 15, 0.14 and 0.13):

Warning: Each child in an array or iterator should have a unique "key" prop.
Check the render method of `Menu`. See https://fb.me/react-warning-keys for
more information.

in div (created by Menu)
in Menu

Again, kudos to React for good error and warning messages.

 So each element of a list must have a unique value for a key attribute. They don’t

have to be unique across the entire app and other components, just within this list.

Interestingly, since React v15, you won’t see the key attributes in HTML (and that’s a

good thing—let’s not pollute HTML). But React DevTools shows the keys, as you can

see in figure 9.2.

Figure 9.2 React DevTools show you the keys of the list elements.

191Building the menu without JSX

The <div> has a key attribute, which is important. It allows React to optimize render-

ing of lists by converting them to hashes, and access time for hashes is better than that

for lists or arrays. Basically, you create numerous Link components in an array, and

each of them takes the property label with a value from the menus array.

 Here’s the full code for Menu (ch09/menu/script.js); it’s simple and straightforward.

class Menu extends React.Component {
render() {
let menus = ['Home',

'About',
'Services',
'Portfolio',
'Contact us']

return React.createElement('div',
null,
menus.map((v, i) => {

return React.createElement('div',
{key: i},
React.createElement(Link, {label: v})

)
})

)
}}

Now let’s move on to the Link implementation.

Listing 9.2 Menu component that uses map() to render links

The Array.map() function

The mapping function from the Array class is used frequently in React components

to represent lists of data. This is because when you create UIs, you do so from data

represented as an array. The UI is also an array, but with slightly different elements

(React elements!).

map() is invoked on an array, and it returns new array elements that are transformed

from the original array by the function. At a minimum, when working with map(), you

need to pass this function:

[1, 2, 3].map(value => <p>value</p>)

➥ // <p>1</p><p>2</p><p>3</p>

You can use two more arguments in addition to the value of the item (value)—index
and list:

[1, 2, 3].map((value, index, list) => {
return <p id={index}>{list[index]}</p>

}) // <p id="0">1</p><p id="1">2</p><p id="2">3</p>

192 CHAPTER 9 Project: Menu component

9.2.2 The Link component

The call to map() creates a Link component for each item in the menus array. Let’s

look at the code for Link and see what happens when each Link component is

rendered.

 In the Link component’s render code, you write an expression to create a URL.

That URL will be used in the href attribute of the <a> tag. The this.props.label

value is passed to Link from Menu when Link is created. In the render() function of

the Menu component, Link elements are created in the map’s closure/iterator func-

tion using React.createElement(Link, {label: v}).

 The label property is used to construct the URL slug (must be lowercase and

should not include spaces):

class Link extends React.Component {
render() {
const url='/'

+ this.props.label
.toLowerCase()
.trim()
.replace(' ', '-')

The methods toLowerCase(), trim(), and replace() are standard JavaScript string

functions. They perform conversion to lowercase, trim white space at edges, and

replace white spaces with dashes, respectively.

 The URL expression produces the following URLs:

 /home for Home

 /about for About

 /services for Services

 /portfolio for Portfolio

 /contact-us for Contact us

Now you can implement Link’s UI: the render() return value. In the render func-

tion’s return of the Link component, you pass this.props.label as a third argument

to createElement(). It becomes part of the <a> tag content (link text). Link could

render this element:

//...
return React.createElement(

'a',
{href: url},
this.props.label

)
}

}

But it’s better to separate each link with a line-break element (
). And because the

component must return only one element, you’d have to wrap the anchor element

193Building the menu without JSX

(<a>) and line break (
) in a div container (<div>). Therefore, you start the

return in the Link component’s render() with div, without attributes:

//...
return React.createElement('div',

null,
//...

Each argument after the second to createElement() (for example, the third, fourth,

and fifth) will be used as content (children). To create the link element, you pass it as

the second argument. And to create a break element after each link, you pass the line-

break element
 as the fourth argument:

//...
return React.createElement('div',

null,
React.createElement(

'a',
{href: url},
this.props.label

),
React.createElement('br')

)
}

})

Here’s the code for the full Link component for your reference (ch09/menu/

script.js). The url function can be created as a class method or as a method outside of

the component.

class Link extends React.Component {
render() {
const url='/'

+ this.props.label
.toLowerCase()
.trim()
.replace(' ', '-')

return React.createElement('div',
null,
React.createElement(

'a',
{href: url},
this.props.label

),
React.createElement('br')

)
}

}

Listing 9.3 Link component

Defines a function that
creates URL fragments
out of the menu names

Passes the URL fragment
to set the href attribute

Adds a line-break element
to separate menu items

194 CHAPTER 9 Project: Menu component

Let’s get this menu running.

9.2.3 Getting it running

To view the page, shown in figure 9.3, open it as a file in Chrome, Firefox, Safari, or

(maybe) Internet Explorer. That’s it. No compilation is needed for this project.

Figure 9.3 React menu showing rendering of nested components

Using a local web server

When you open the example page, the protocol in the address bar will be file://….

This isn’t ideal but will do for this project. For real development, you’ll need a web

server; with a web server, the protocol is http://… or https://…, as in figure 9.3.

Yes, even for a simple web page like this one, I prefer to use a local web server. It

makes the running code more closely resemble how it would be in production. Plus,

you can use AJAX/XHR, which you can’t use if you’re opening an HTML file in a browser.

The easiest way to run a local web server is to use node-static

(www.npmjs.com/package/node-static) or a similar Node.js tool like http-server

(www.npmjs.com/package/http-server). This is true even for Windows, although I

stopped using that OS many years ago. If you’re hell-bent on not using Node.js, then

alternatives include IIS, Apache HTTP Server, NGINX, MAMP, LAMP, and other varia-

tions of web servers. Needless to say, Node.js tools are highly recommended for their

minimalist, lightweight approach.

195Building the menu in JSX

No thrills here, but the page should display five links (or more, if you add items to the

menus array), as shown earlier in figure 9.1. This is much better than copying and past-

ing five <a> elements and then ending up with multiple places to modify the labels

and URLs. And the project can be even better with JSX.

9.3 Building the menu in JSX

This project is more extensive, containing node_modules, package.json, and JSX:

/menu-jsx
/node_modules
index.html
package.json
react-dom.js
react.js
script.js
script.jsx

As you can see, there’s a node_modules folder for developer dependencies such as

Babel, which is used for JSX-to-JS transpilation.

NOTE Although it’s possible to install react and react-dom as npm modules
instead of having them as files, doing so leads to additional complexity if you
decide to deploy. Right now, to deploy this app, you can just copy the files in
the project folder without node_modules. If you install React and ReactDOM
with npm, then you have to include that folder as well, use a bundler, or copy
the JS files from dist into root (where you already have them). So, for this
example, we’ll use the files in root. I cover bundlers in part 2 of this book, but
for now let’s keep things simple.

(continued)

To install node-static, use npm:

$ npm install -g node-static@0.7.6

Once it’s installed, run this command from your project’s root folder (or from a parent

folder) to make the file available on http://localhost:8080. This isn’t an external

link—run the following command before clicking the link:

$ static

If you run static in react-quickly/ch09/menu, then the URL will be http://

localhost:8080. Conversely, if you run static from react-quickly, then the URL needs

to be http://localhost:8080/ch09/menu.

To stop the server on macOS or Unix/Linux (POSIX systems), press Ctrl-C. As for Win-

dows, I don’t know!

Babel dev dependency for
JSX-to-JS transpilation

Main JSX script

196 CHAPTER 9 Project: Menu component

Create a new folder:

$ mkdir menu-jsx
$ cd menu-jsx

Then, create the package.json file in it using npm init -y. Add the following code to

package.json to install and configure Babel (ch09/menu-jsx/package.json).

{
"name": "menu-jsx",
"version": "1.0.0",
"description": "",
"main": "script.js",
"scripts": {
"build": "./node_modules/.bin/babel script.jsx -o script.js -w"

},
"author": "Azat Mardan",
"license": "MIT",
"babel": {
"presets": ["react"]

},
"devDependencies": {
"babel-cli": "6.9.0",
"babel-preset-react": "6.5.0"

}
}

Install the developer dependencies packages with npm i or npm install. Your setup

should be ready now.

 Let’s look at script.jsx. At a higher level, it has these parts:

class Menu extends React.Component {
render() {
//...

}
}

class Link extends React.Component {
render() {
//...

}
}

ReactDOM.render(<Menu />, document.getElementById('menu'))

Looks familiar, right? It’s the same structure as in Menu without JSX. The primary

change in this high-level listing is replacing createElement() for the Menu compo-

nent in ReactDOM.render() with this line:

ReactDOM.render(<Menu />, document.getElementById('menu'))

Listing 9.4 package.json for Menu in JSX

Defines a build script
with the watch flag

Configures Babel to
transpile React’s JSX

Includes the Babel CLI as
well as a React/JSX preset

197Building the menu in JSX

Next, you’ll refactor the components.

9.3.1 Refactoring the Menu component

The beginning of Menu is the same:

class Menu extends React.Component {
render() {
let menus = ['Home',

'About',
'Services',
'Portfolio',
'Contact us']

return //...
}

}

In the refactoring example for the Menu component, you need to output the value v as

a label’s attribute value (that is, label={v}). In other words, you assign the value v as a

property for label. So the line to create the Link element changes from

React.createElement(Link, {label: v})

to this JSX code:

<Link label={v}/>

The label property of the second argument ({label: v}) becomes the attribute

label={v}. The attribute’s value v is declared with {} to make it dynamic (versus a

hardcoded value).

NOTE When you use curly braces to assign property values, you don’t need
double quotes ("").

React also needs the key={i} attribute to access the list more efficiently. Therefore,

the final Menu component is restructured as this JSX code (ch09/menu-jsx/script.jsx).

class Menu extends React.Component {
render() {
let menus = ['Home',

'About',
'Services',
'Portfolio',
'Contact us']

return <div>
{menus.map((v, i) => {

return <div key={i}><Link label={v}/></div>
})}

</div>
}}

Listing 9.5 Menu with JSX

198 CHAPTER 9 Project: Menu component

Do you see the increase in readability? I do!

 In Menu’s render(), if you prefer to start the <div> on a new line, you can do so by

putting () around it. For example, this code is identical to listing 9.5, but <div> starts

on a new line, which may be more visually appealing:

//...
return (

<div>
{menus.map((v, i) => {

return <div key={i}><Link label={v}/></div>
})}

</div>
)

}})

9.3.2 Refactoring the Link component

The <a> and
 tags in the Link component also need to be refactored from this

//...
return React.createElement('div',

null,
React.createElement(

'a',
{href: url},
this.props.label),

React.createElement('br')
)

//...

to this JSX code:

//...
return <div>

{this.props.label}

</div>
//...

The entire JSX version of the Link component should look something like this

(ch09/menu-jsx/script.jsx).

class Link extends React.Component {
render() {
const url='/'

+ this.props.label
.toLowerCase()

Listing 9.6 JSX version of Link

199Building the menu in JSX

.trim()

.replace(' ', '-')
return <div>

{this.props.label}

</div>
}

}

Phew. You’re finished! Let’s run the JSX project.

9.3.3 Running the JSX project

Open your Terminal, iTerm, or Command Prompt app. In the project’s folder

(ch09/menu-jsx or whatever you named it when you downloaded the source code),

install dependencies with npm i (short for npm install) following the entries in

package.json.

 Then, run the npm build script with npm run build. The npm script will launch the

Babel command with a watch flag (-w), which will keep Webpack running so it can

watch for any file changes and recompile code from JSX to JS if there are changes to

the JSX source code.

 Needless to say, watch mode is a time-saver because it eliminates the need to

recompile each time there’s a change to the source code. Hot module replacement is

even better for development (so good that it could easily be the only reason to use

React); I’ll cover it in chapter 12.

 The actual command in the build script is as follows (but who wants to type it? It’s

too long!):

./node_modules/.bin/babel script.jsx -o script.js -w

If you need a refresher on the Babel CLI, refer to chapter 3. You’ll find all the details

there.

 On my computer, I got this message from the Babel CLI (on yours, the path will

differ):

> menu-jsx@1.0.0 build /Users/azat/Documents/Code/react-quickly/ch09/menu-jsx
> babel script.jsx -o script.js -w

You’re good to go. With script.js generated, you can use static (node-static on

npm: npm i -g node-static) to serve the files over HTTP on localhost. The applica-

tion should look and work exactly like its regular JavaScript brethren, as shown in fig-

ure 9.4.

200 CHAPTER 9 Project: Menu component

9.4 Homework

For bonus points, do the following:

 Load menu from menus.json via the Fetch API. See chapter 5 for inspiration

about how to load data.

 Create an npm script that will grab react.js from the react npm package

installed in node_modules and copy it into the project folder to be used by

index.html. This will replace the need to manually download react.js for future

versions; instead, you can use npm i react and then run your script.

Submit your code in a new folder under ch09 as a pull request to this book’s GitHub

repository: https://github.com/azat-co/react-quickly.

9.5 Summary

 key is your friend. Set this attribute when you’re generating lists.

 map() is an elegant way to create a new array based on the original array. Its iter-

ator arguments are value, index, and list.

 For JSX to work, at a bare minimum, you need the Babel CLI and React presets.

Figure 9.4 The menu created with JSX

201

Project:
 Tooltip component

When you’re working on websites that have a lot of text, such as Wikipedia, it’s a

great idea to allow users to get additional information without losing their position

and context. For example, you can give them an extra hint in a box when they

hover the cursor (see figure 10.1). This hint hover box is called a tooltip.

 React is all about UIs and a better UX, so it’s a good fit for a tooltip implementa-

tion. Let’s build a component to display helpful text on a mouse-over event.

 There are a few out-of-the-box tooltip solutions, including react-tooltip

(www.npmjs.com/package/react-tooltip), but the goal here is to learn about React.

Building a tooltip from scratch is a really good exercise. Maybe you’ll use this exam-

ple in your daily work by making it a part of your app, or extend it into a new open

source React component!

This chapter covers

 Understanding the project structure and scaffolding

 Building the Tooltip component

Watch this chapter’s introduction video by

scanning this QR code with your phone or going

to http://reactquickly.co/videos/ch10.

202 CHAPTER 10 Project: Tooltip component

The key to creating the Tooltip component is to be able to take any text, hide it with

CSS, and make it visible again on mouse-over. You’ll use if/else conditions, JSX, and

other programming elements for this project. For the CSS part, you’ll use Twitter

Bootstrap classes and a special Twitter Bootstrap theme to make the tooltip look nice

in a short amount of time.

NOTE To follow along with this project, you’ll need to download the
unminified version of React and install node.js and npm for compiling JSX. In
this example, I also use a theme called Flatly from Bootswatch
(https://bootswatch.com/flatly). This theme depends on Twitter Bootstrap.
Appendix A covers how to install everything.

NOTE The source code for the example in this chapter is at www.manning
.com/books/react-quickly and https://github.com/azat-co/react-quickly/
tree/master/ch10 (in the ch10 folder of the GitHub repository https://
github.com/azat-co/react-quickly). You can also find some demos at http://
reactquickly.co/demos.

10.1 Project structure and scaffolding

The project structure for the Tooltip component is as follows:

/tooltip
/node_modules
bootstrap.css
index.html
package.json
react-dom.js
react.js
script.js
script.jsx

Figure 10.1 A tooltip appears when a user hovers their cursor over the marked text.

Babel dev dependency for
JSX-to-JS transpilation

Main JSX script

203Project structure and scaffolding

As in chapter 9, there’s a node_modules folder for developer dependencies such as

Babel, which is used for JSX-to-JS transpilation. The structure is flat, with styles and

scripts in the same folder. I did this to keep everything simple. Of course, in a real

app, you’ll put styles and scripts in separate folders.

 The key parts in package.json are the npm script to build, the Babel configuration,

dependencies, and other metadata.

{
"name": "tooltip",
"version": "1.0.0",
"description": "",
"main": "script.js",
"scripts": {
"build": "./node_modules/.bin/babel script.jsx -o script.js -w"

},
"author": "Azat Mardan",
"license": "MIT",
"babel": {
"presets": ["react"]

},
"devDependencies": {
"babel-cli": "6.9.0",
"babel-preset-react": "6.5.0"

}
}

After you’ve created package.json, be sure to run npm i or npm install.

 Next, you’ll start on the HTML. Create index.html, as shown in the following listing

(ch10/tooltip/index.html).

<!DOCTYPE html>
<html>

<head>
<script src="react.js"></script>
<script src="react-dom.js"></script>
<link href="bootstrap.css"

rel="stylesheet"
type="text/css"/>

</head>

<body class="container">
<h1>Tooltip Widget</h1>
<div id="tooltip"></div>
<script src="script.js" type="text/javascript"></script>

</body>

</html>

Listing 10.1 Tooltip project package.json file

Listing 10.2 Tooltip project index.html file

Applies styles

Defines the render element
for React and Tooltip

204 CHAPTER 10 Project: Tooltip component

In <head>, you include React, React DOM files, and Twitter Bootstrap styles. body is

minimal: it contains a <div> with ID tooltip and the application’s script.js file.

 Next, you’ll create script.jsx. That’s right—this isn’t a typo. The source code is in

script.jsx, but you include the script.js file in your HTML. That’s because you’ll be

using the command-line Babel tool.

10.2 The Tooltip component

Let’s look at script.jsx (ch10/tooltip/script.jsx). It’s pretty much just the code for the

component and the tooltip text you want to render. The tooltip text is a property that

you set when you create Tooltip in ReactDOM.render().

class Tooltip extends React.Component {
constructor(props) {
...

}
toggle() {
...

}
render() {
...

}
}

ReactDOM.render(<div>
<Tooltip text="The book you're reading now">React Quickly</Tooltip>
was published in 2017. It's awesome!

</div>,
document.getElementById('tooltip'))

Let’s implement Tooltip and declare the component with an initial state of opacity:

false. This state commands the help text to be hidden or shown. (Chapter 4 covered

states in more detail.) Here’s the constructor() method in action:

class Tooltip extends React.Component {
constructor(props) {
super(props)
this.state = {opacity: false}
this.toggle = this.toggle.bind(this)

}
...

}

The initial state hides the help text. Toggling changes this state and the visibility of the

tooltip—that is, whether the help text is shown. Let’s implement toggle().

Listing 10.3 Tooltip component and text

Declares a method to show
and hide the help text

Declares a mandatory
render() method

Provides help text as a
property. The content
is the highlighted text

over which the user
hovers the cursor.

205The Tooltip component

10.2.1 The toggle() function

Now you’ll define the toggle() function that switches the visibility of the tooltip by

changing the opacity state to the opposite of what it was before (true to false, or false

to true):

toggle() {
const tooltipNode = ReactDOM.findDOMNode(this)
this.setState({

opacity: !this.state.opacity,
...

})
}

To change opacity, you use the this.setState() method, which you learned about

in chapter 4.

 A tricky thing about tooltip help text is that you must place the help text close to the

element the mouse is hovering over. To do so, you need to get the position of the

component using tooltipNode. You position the tooltip text using offsetTop and

offsetLeft on the DOM node. These are DOM Node properties from the HTML standard

(https://developer.mozilla.org/en-US/docs/Web/API/Node), not a React thing:

top: tooltipNode.offsetTop,
left: tooltipNode.offsetLeft

})
},

Here’s the full code for toggle() (ch10/tooltip/script.jsx).

toggle() {
const tooltipNode = ReactDOM.findDOMNode(this)
this.setState({

opacity: !this.state.opacity,
top: tooltipNode.offsetTop,
left: tooltipNode.offsetLeft

})
}

Here it is using ES destructuring:

toggle() {
const {offsetTop: top, offsetLeft: left} = ReactDOM.findDOMNode(this)

this.setState({
opacity: !this.state.opacity,
top,
left

})
}

Listing 10.4 toggle() function

206 CHAPTER 10 Project: Tooltip component

Looking at the code, you can see that it changes the state and position. Do you need

to rerender the view now? No, because React will update the view for you. setState()

will invoke a rerender automatically. It may or may not result in DOM changes,

depending on whether the state was used in render()—which you’ll implement next.

10.2.2 The render() function

The render() function holds the CSS style object for the help text and also holds

Twitter Bootstrap styles. First, you need to define the style object. You’ll set the

opacity and z-index CSS styles depending on the value of this.state.opacity. You

need z-index to float the help text above any other elements, so set the value

reasonably high—1000 when the text is visible and -1000 when it’s not:

zIndex: (this.state.opacity) ? 1000 : -1000,

For z-index, you need to use zIndex (note the camelCase). Figure 10.2 shows how

the styles are applied at mouse-over (opacity is true).

Styles change on mouse-over

to show additional text (tooltip).

Figure 10.2 The help text is shown on mouse-over by using an opacity value of 1 and zIndex value

of 1000.

207The Tooltip component

TIP Remember to use camelCase with React instead of dash syntax. The CSS

property z-index becomes the React style property zIndex; background-
color becomes backgroundColor; font-family becomes fontFamily, and so
on. When you use valid JavaScript names, React can update the real DOM

from the virtual one more quickly.

State opacity this.state.opacity is a Boolean true or false, but CSS opacity is a

binary 0 or 1. If state opacity is false, CSS opacity is 0; and if state opacity is true, CSS

opacity is 1. You need to convert, using a binary operator (+):

opacity: +this.state.opacity,

As far as the position of the tooltip goes, you want to place the help text near the text

over which the mouse is hovering by adding 20 pixels to top (the distance from the

top edge of the window to the element) and subtracting 30 pixels from left (the dis-

tance from the left edge of the window to the element). The values were chosen visu-

ally; feel free to adjust the logic as you see fit:

render() {
const style = {

zIndex: (this.state.opacity) ? 1000 : -1000,
opacity: +this.state.opacity,
top: (this.state.top || 0) + 20,
left: (this.state.left || 0) -30

}

Next is return. The component will render both the text over which to hover and the

help text. I’m using Twitter Bootstrap classes along with my style object to hide the

help text and to show it later.

 The text over which users can hover to see a tooltip is colored blue, so they can tell

it apart visually from other text. It has two mouse events for when the cursor enters

and leaves the span:

return (
<div style={{display: 'inline'}}>

<span style={{color: 'blue'}}
onMouseEnter={this.toggle}
onMouseOut={this.toggle}>
{this.props.children}

Next is the code for the help text. It’s static-like, except for {style}. React will change

the state, and that will trigger the change in the UI:

<div className="tooltip bottom" style={style} role="tooltip">
<div className="tooltip-arrow"></div>
<div className="tooltip-inner">

Outputs whatever
inner HTML will pass
to Tooltip later

Applies the style object
to the style attributeUses the

arrow class for
a pointy arrow

208 CHAPTER 10 Project: Tooltip component

{this.props.text}
</div>

</div>
</div>

)
}

}

The next listing shows the Tooltip component’s full render() method.

render() {
const style = {
zIndex: (this.state.opacity) ? 1000 : -1000,
opacity: +this.state.opacity,
top: (this.state.top || 0) + 20,
left: (this.state.left || 0) - 30

}
return (
<div style={{display: 'inline'}}>

<span style={{color: 'blue'}}
onMouseEnter={this.toggle}
onMouseOut={this.toggle}>
{this.props.children}

<div className="tooltip bottom"

style={style}
role="tooltip">
<div className="tooltip-arrow"></div>
<div className="tooltip-inner">

{this.props.text}
</div>

</div>
</div>

)
}

That’s it. You’re finished with the Tooltip component!

10.3 Getting it running

Try this component or use it in your projects by compiling the JSX with npm:

$ npm run build

This Tooltip component is pretty cool, thanks to Twitter Bootstrap styles. Maybe it’s

not as versatile as some other modules out there, but you built it yourself from scratch.

That’s what I’m talking about! With the help of Twitter Bootstrap classes and React,

you were able to create a good tooltip (see figure 10.3) in almost no time. It’s even

responsive: it adapts to various screen sizes, thanks to dynamic positioning!

Listing 10.5 Full render() function for Tooltip

Outputs the text of the
tooltip from the text
property {this.props.text}

Triggers showing the help
text on mouse enter

Outputs any text
passed as the
content of Tooltip

Applies styles with
opacity, zIndex,

and proper
position based on

the position of the
DOM node

Outputs the help
text using Twitter
Bootstrap classes

209Summary

10.4 Homework

For bonus points, do the following:

 Create a variation that works in response to a mouse click—that is, shows the

tooltip when you click the highlighted text and hides it when you click the text

again.

 Enhance Tooltip by making it take a property that determines whether it’s on-

mouse-over or on-click behavior.

 Enhance Tooltip by making it take a property that positions the help text

above the text instead of in the default position below the text (hint: change

the TB class, and change top and left).

Submit your code in a new folder under ch10 as a pull request to this book’s GitHub

repository: https://github.com/azat-co/react-quickly.

10.5 Summary

 React style properties are camelCase, unlike CSS style properties.

 this.props.children has the component’s content.

 There’s no need to manually rerender, because React automatically rerenders

after setState().

Figure 10.3 When the user hovers over blue text, a black container with text and a

pointy arrow appears, offering additional information.

210

Project:
 Timer component

Studies have shown that meditation is great for health (calming) and productivity

(focus).1 Who doesn’t want to be healthier and more productive, especially with

minimal monetary investment?

 Gurus recommend starting with as little as 5 minutes of meditation and pro-

gressing to 10 minutes and then 15 minutes over the span of a few weeks. The tar-

get is 30–60 minutes of meditation per day, but some people notice improvements

with as little as 10 minutes per day. I can attest to that: after meditating 10 minutes

per day every day for 3 years, I am more focused, and it has also helped me in

other areas.

This chapter covers

 Understanding the project structure and scaffolding

 Building the app’s architecture

1 See “Research on Meditation,” Wikipedia, https://en.wikipedia.org/wiki/Research_on_meditation; “Med-
itation: In Depth,” National Institutes of Health, http://mng.bz/01om; “Harvard Neuroscientist: Meditation
Not Only Reduces Stress, Here’s How It Changes Your Brain,” The Washington Post, May 26, 2015,
http://mng.bz/1ljZ; and “Benefits of Meditation,” Yoga Journal, http://mng.bz/7Hp7.

Watch this chapter’s introduction video by

scanning this QR code with your phone or going

to http://reactquickly.co/videos/ch11.

211Project structure and scaffolding

But how do you know when you’ve reached your daily meditation goal? You need a

timer! So in this chapter, you’ll put your React and HTML5 skills to the test and create

a web timer (see figure 11.1). To make it easy for testing purposes, this timer will only

run for 5, 10, or 15 seconds.

 The idea is to have three controls that set a countdown timer (n to 0). Think of a

typical kitchen timer, but instead of minutes, it will count seconds. Click a button, and

the timer starts. Click it again, or click another button, and the timer starts over.

NOTE To follow along with this project, you’ll need to download the unmini-
fied version of React and install node.js and npm for compiling JSX. In this
example, I also use a theme called Flatly from Bootswatch (https://bootswatch
.com/flatly). This theme depends on Twitter Bootstrap. Appendix A covers
how to install everything.

NOTE The source code for the example in this chapter is at www.manning
.com/books/react-quickly and https://github.com/azat-co/react-quickly/
tree/master/ch11 (in the ch11 folder of the GitHub repository https://
github.com/azat-co/react-quickly). You can also find some demos at http://
reactquickly.co/demos.

11.1 Project structure and scaffolding

The project structure for the Timer component, not unlike Tooltip and Menu, is as

follows:

/timer
/node_modules
bootstrap.css
flute_c_long_01.wav
index.html
package.json
react-dom.js
react.js
timer.js
timer.jsx

Figure 11.1 The timer example in

action, with 14 seconds remaining.

The selected 15 Seconds button

was clicked a second ago.

Babel dev dependency for
JSX-to-JS transpilation

Sound file to signal
the end of the time

Main JSX script

212 CHAPTER 11 Project: Timer component

As before, there’s a node_modules folder for developer dependencies such as Babel,

which is used for JSX-to-JS transpilation. The structure is flat, with styles and scripts in

the same folder. I did this to keep things simple; in a real app, you’ll put styles and

scripts in separate folders.

 The key parts of package.json are the npm script to build, the Babel configuration,

dependencies, and other metadata.

{
"name": "timer",
"version": "1.0.0",
"description": "",
"main": "script.js",
"scripts": {
"build": "./node_modules/.bin/babel timer.jsx -o timer.js -w"

},
"author": "Azat Mardan",
"license": "MIT",
"babel": {
"presets": ["react"]

},
"devDependencies": {
"babel-cli": "6.9.0",
"babel-preset-react": "6.5.0"

}
}

After you’ve created package.json, either by copying and pasting or by typing, be sure

to run npm i or npm install.

 The HTML for this project is very basic (ch11/timer/index.html). It includes the

react.js and react-dom.js files, which, for the sake of simplicity, are in the same folder

as the HTML file.

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Timer</title>
<script src="react.js" type="text/javascript"></script>
<script src="react-dom.js" type="text/javascript"></script>
<link href="bootstrap.css" rel="stylesheet" type="text/css"/>

</head>
<body class="container-fluid">
<div id="timer-app"/>

</body>
<script src="timer.js" type="text/javascript"></script>

</html>

Listing 11.1 Timer project package.json file

Listing 11.2 Timer project index.html file

Creates an npm script
to transpile JSX into JS

213App architecture

This file only includes the library and points to timer.js, which you’ll create from

timer.jsx. To do so, you’ll need the Babel CLI (see chapter 3).

11.2 App architecture

The timer.jsx file will have three components:

 TimerWrapper—Primary component that will do most of the work and render

other components

 Timer—Component to display the number of seconds remaining

 Button—Component to render three buttons and trigger (reset) the timer

Figure 11.2 shows how they’ll look on the page. You can see the Timer and Button

components; TimerWrapper has all three buttons and Timer inside it. TimerWrapper is

a container (smart) component, whereas the other two are representational (dumb).

We’re breaking the app into three pieces because in software engineering, things tend

to change quickly with each new release. By separating the presentation (Button and

Timer) and logic (TimerWrapper), you can make the app more adaptable. Moreover,

you’ll be able to reuse elements like buttons in other apps. The bottom line is that

keeping representation and business logic separate is a best practice when working

with React.

 You need TimerWrapper to communicate between Timer and Buttons. The interac-

tion between these three components and a user is shown in figure 11.3:

1 TimerWrapper renders Timer and the Buttons by passing TimerWrapper’s states

as properties.

2 The user interacts with a button, which triggers an event in the button.

3 The event in the button calls the function in TimerWrapper with the time value

in seconds.

4 TimerWrapper sets the interval and updates Timer.

5 Updates continue until there are 0 seconds left.

ButtonTimer

Figure 11.2 Timer and

Button components

214 CHAPTER 11 Project: Timer component

For simplicity, you’ll keep all three components in the timer.jsx file.

class TimerWrapper extends React.Component {
constructor(props) {
// ...

}
startTimer(timeLeft) {
// ...

}
render() {
// ...

}
}

class Timer extends React.Component {
render() {
// ...

}
}

class Button extends React.Component {
startTimer(event) {
// ...

}
render() {
// ...

}
}

Listing 11.3 Outline of timer.jsx

TimerWrapper

this.state.time

this.startTimer

TimerWrapper

Timer Button User

Timer Button User

Click

Click with time value

Update this.state.time

Sets intervals

Updates every 1 s

Figure 11.3 Timer app execution, starting at the top

Sets initial
states

Triggers the new
timer (reset)

Triggers the new timer
(reset) from a user click. Calls
startTimer from TimerWrapper.

215The TimerWrapper component

ReactDOM.render(
<TimerWrapper/>,
document.getElementById('timer-app')

)

Let’s start from the bottom of the timer.jsx file and render the main component

(TimerWrapper) into the <div> with ID timer-app:

ReactDOM.render(
<TimerWrapper/>,
document.getElementById('timer-app')

)

ReactDOM.render() will be the last call in the file. It uses TimerWrapper, so let’s define

this component next.

11.3 The TimerWrapper component

TimerWrapper is where all the fun happens! This is the high-level overview of the

component:

class TimerWrapper extends React.Component {
constructor(props) {
// ...

}
startTimer(timeLeft) {
// ...

}
render() {
// ...

}
}

First, you need to be able to save the time left (using timeLeft) and reset the timer

(using timer). Therefore, you’ll use two states: timeLeft and timer.

 On the first app load, the timer shouldn’t be running; so, in the constructor of

TimerWrapper, you need to set the time (timeLeft) state to null. This will come in

handy in Timer, because you’ll be able to tell the difference between the first load

(timeLeft is null) and when the time is up (timeLeft is 0).

 You also set the timer state property to null. This property holds a reference to

the setInterval() function that will do the countdown. But right now there’s no run-

ning timer—thus, the null value.

 Finally, bind the startTimer() method, because you’ll be using it as an event han-

dler (for buttons):

class TimerWrapper extends React.Component {
constructor(props) {
super(props)
this.state = {timeLeft: null, timer: null}

Renders
TimerWrapper

216 CHAPTER 11 Project: Timer component

this.startTimer = this.startTimer.bind(this)
}
...

Next is the startTimer event handler. It’s called each time a user clicks a button. If a

user clicks a button when the timer is already running, then you need to clear the pre-

vious interval and start anew. You definitely don’t want multiple timers running at the

same time. For this reason, the first thing the startTimer() method does is stop the

previous countdown by clearing the result of setInterval(). The current timer’s

setInterval object is stored in the this.state.timer variable.

 To remove the result of setInterval(), there’s a clearInterval() method. Both

clearInterval() (http://mng.bz/7104) and setInterval() (http://mng.bz/P2d6)

are browser API methods; that is, they’re available from a window object without addi-

tional libraries or even prefixes. (window.clearInterval() will also work for browser

code, but it will break in Node.js.) Call clearInterval() on the first line of the event

handler for the buttons:

class TimerWrapper extends React.Component {
constructor(props) {
// ...

}
startTimer(timeLeft) {
clearInterval(this.state.timer)
// ...

}

After you clear the previous timer, you can set a new one with setInterval(). The

code passed to setInterval() will be called every second. For this code, let’s use a fat-

arrow function to bind the this context. This will allow you to use TimerWrapper

state, properties, and methods in this function (closure/callback) of setInterval():

class TimerWrapper extends React.Component {
constructor(props) {
// ...

}
startTimer(timeLeft) {
clearInterval(this.state.timer)
let timer = setInterval(() => {

// ...
}, 1000)
// ...

}
render() {
// ...

}
}

Now, you’ll implement the function. The timeLeft variable stands for the amount of

time left on the timer. You use it to save the current value minus 1 and check whether

217The TimerWrapper component

it reached 0. If it did, then you remove the timer by invoking clearInterval() with a

reference to the timer object (created by setInterval()), which is stored in the

timer variable. The reference to timer is saved in setInterval()’s closure even for

future function calls (each second that passes). This is the way JavaScript scoping

works. So, there’s no need to pull the value of the timer object from the state

(although you could).

 Next, save timeLeft during every interval cycle. And finally, save timeLeft and the

timer object when the button is clicked:

//...
startTimer(timeLeft) {
clearInterval(this.state.timer)
let timer = setInterval(() => {

var timeLeft = this.state.timeLeft - 1
if (timeLeft == 0) clearInterval(timer)
this.setState({timeLeft: timeLeft})

}, 1000)
return this.setState({timeLeft: timeLeft, timer: timer})

}
//...

You set the states to the new values using setState(), which is asynchronous. The

setInterval() interval length is 1,000 ms, or 1 second. You need to set the state to

the new values of timeLeft and timer because the app needs to update those values,

and you can’t use simple variables or properties for that.

 setInterval() is scheduled to be executed asynchronously in the JavaScript event

loop. The returned setState() will fire before the first setInterval() callback. You

can easily test it by putting console logs in your code. For example, the following code

will print 1 and then 2, not 2 and then 1:

...
startTimer(timeLeft) {
clearInterval(this.state.timer)
let timer = setInterval(() => {

console.log('2: Inside of setInterval')
var timeLeft = this.state.timeLeft - 1
if (timeLeft == 0) clearInterval(timer)
this.setState({timeLeft: timeLeft})

}, 1000)
console.log('1: After setInterval')
return this.setState({timeLeft: timeLeft, timer: timer})

}
...

Last is the mandatory render() function for TimerWrapper. It returns <h2>, three but-

tons, and the Timer component. row-fluid and btn-group are Twitter Bootstrap

classes—they make buttons look better and aren’t essential to React:

218 CHAPTER 11 Project: Timer component

render() {
return (

<div className="row-fluid">
<h2>Timer</h2>
<div className="btn-group" role="group" >

<Button time="5" startTimer={this.startTimer}/>
<Button time="10" startTimer={this.startTimer}/>
<Button time="15" startTimer={this.startTimer}/>

</div>

This code shows how you can reuse the Button component by providing different val-

ues for the time property. These time property values allow buttons to display differ-

ent times in their labels and to set different timers. The startTimer property of

Button has the same value for all three buttons. The value is this.startTimer from

TimerWrapper, which starts/resets the timer, as you know.

 Next, you display the text “Time left: …,” which is rendered by the Timer compo-

nent. To do so, you pass the time state as a property to Timer. To adhere to the best

React practice, Timer is stateless. React updates the text on the page (Timer) automat-

ically when the property (Timer) is updated by the change of the state (TimerWrapper).

You’ll implement Timer later. For now, use it like this:

<Timer time={this.state.timeLeft}/>

In addition, the <audio> tag (an HTML5 tag that points to a file) alerts you when the

time is up:

<audio id="end-of-time" src="flute_c_long_01.wav" preload="auto">

➥ </audio>
</div>

)
}

}

For your reference and better understanding (sometimes it’s nice to see the entire

component), here’s the meat—or tofu, for my vegetarian readers—of the timer app:

the full code for TimerWrapper (ch11/timer/timer.jsx).

class TimerWrapper extends React.Component {
constructor(props) {
super(props)
this.state = {timeLeft: null, timer: null}
this.startTimer = this.startTimer.bind(this)

}
startTimer(timeLeft) {
clearInterval(this.state.timer)
let timer = setInterval(() => {

console.log('2: Inside of setInterval')

Listing 11.4 TimerWrapper component

Clears the timer to reset
it, in case any other
timers were running

219The Timer component

var timeLeft = this.state.timeLeft - 1
if (timeLeft == 0) clearInterval(timer)
this.setState({timeLeft: timeLeft})

}, 1000)
console.log('1: After setInterval')
return this.setState({timeLeft: timeLeft, timer: timer})

}
render() {
return (

<div className="row-fluid">
<h2>Timer</h2>
<div className="btn-group" role="group" >

<Button time="5" startTimer={this.startTimer}/>
<Button time="10" startTimer={this.startTimer}/>
<Button time="15" startTimer={this.startTimer}/>

</div>
<Timer timeLeft={this.state.timeLeft}/>
<audio id="end-of-time" src="flute_c_long_01.wav"

➥ preload="auto"></audio>
</div>

)
}

}

TimerWrapper has a lot of logic. Other components are stateless and basically clue-

less. Nevertheless, you need to implement the other two components. Remember

the <audio> tag in TimerWrapper, which will play sounds when the time remaining

reaches 0? Let’s implement the Timer component next.

11.4 The Timer component

The goal of the Timer component is to show the time left and to play a sound when

the time is up. It’s a stateless component. Implement the class, and check whether the

timeLeft property equals 0:

class Timer extends React.Component {
render() {
if (this.props.timeLeft == 0) {

// ...
}
// ...

}
}

To play the sound (file flute_c_long_01.wav), this project uses the special HTML5

<audio> element; you defined it in TimerWrapper, with src pointing to the WAV file

and id set to end-of-time. All you need to do is get the DOM node (the vanilla

JavaScript getElementById() will work fine) and invoke play() (also vanilla

JavaScript from HTML5). This again shows how well React plays with other JavaScripty

things like HTML5, jQuery 3,2 and even Angular 4, if you’re brave enough:

2 For examples of integration with browser events and jQuery, see chapter 6.

Updates the decremented
time left every second

Renders buttons
that call startTimer
with different times

Renders the
text “Time

left:…”
 and plays a
sound when

it’s 0

HTML5s <audio> tag
that plays the alert
when time is 0

220 CHAPTER 11 Project: Timer component

class Timer extends React.Component {
render() {
if (this.props.timeLeft == 0) {

document.getElementById('end-of-time').play()
}
// ...

As explained earlier, you don’t want the timer’s text to say “0” at first, because the

timer has never run. So, in TimerWrapper (listing 11.4), you set the timeLeft value to

null initially. If timeLeft is null or 0, then the Timer component renders an empty

<div>. In other words, the app won’t display 0:

if (this.props.timeLeft == null || this.props.timeLeft == 0)
return <div/>

Otherwise, when timeLeft is greater than 0, an <h1> element shows the time remain-

ing. In other words, now you need to show the time left when the timer is running:

return <h1>Time left: {this.props.timeLeft}</h1>

For your reference, the following listing shows the Timer component in full

(ch11/timer/timer.jsx).

class Timer extends React.Component {
render() {
if (this.props.timeLeft == 0) {

document.getElementById('end-of-time').play()
}
if (this.props.timeLeft == null || this.props.timeLeft == 0)

return <div/>
return <h1>Time left: {this.props.timeLeft}</h1>

}
}

For Timer to show a number of seconds, you need to start the timer first. This happens

when you click the buttons. Onward to those cute little buttons!

11.5 The Button component

To follow the DRY (don’t repeat yourself) principle,3 you’ll create one Button compo-

nent and use it three times to show three different buttons. Button is another stateless

(and very simple) component, as it should be in accordance with a Reactive mindset,

but Button is not as straightforward as Timer, because Button has an event handler.

Listing 11.5 Timer component, showing time remaining

3 The DRY principle is as follows: “Every piece of knowledge must have a single, unambiguous, authoritative
representation within a system”; see “Don’t Repeat Yourself,” Wikipedia, http://mng.bz/1K5k; and The
Pragmatic Programmer: From Journeyman to Master by Andrew Hunt (Addison-Wesley Professional, 1999),
http://amzn.to/2ojjXoY.

Plays a sound
when time is up

Displays nothing initially

Displays the text
“Time left:…”

221The Button component

 Buttons must have an onClick event handler to capture users’ button clicks. Those

clicks trigger the timer countdown. The function to start the timer isn’t implemented

in Button: it’s implemented in TimerWrapper and is passed down to the Button

component from its parent, TimerWrapper, in this.props.startTimer. But how do

you pass time (5, 10, or 15) to TimerWrapper’s startTimer? Look at this code from

TimerWrapper, which passes time-period values as properties:

<Button time="5" startTimer={this.startTimer}/>
<Button time="10" startTimer={this.startTimer}/>
<Button time="15" startTimer={this.startTimer}/>

The idea is to render three buttons using this component (code reuse—yay!). To

know what time the user selected, though, you need the value in this.props.time,

which you pass as an argument to this.props.startTimer.

 If you write the following code, it won’t work:

// Won't work. Must be a definition.
<button type="button" className='btn-default btn'

onClick={this.props.startTimer(this.props.time)}>
{this.props.time} seconds

</button>

The function passed to onClick must be a definition, not an invocation. How about

this?

// Yep. You are on the right path young man.
<button type="button" className='btn-default btn'

onClick={()=>{this.props.startTimer(this.props.time)}}>
{this.props.time} seconds

</button>

Yes. This snippet has the right code to pass the value. This is the correct approach: a

middle step (function) passes the different time values. You can make it more elegant

by creating a class method. Another way would be to use a currying bind() instead of

an interim function:

onClick = {this.props.startTimer.bind(null, this.props.time)}

Recall that bind() returns a function definition. As long as you pass a function defini-

tion to onClick (or any other event handler), you’re good.

 Let’s get back to the Button component. The event handler onClick calls the class

method this.startTimer, which in turn calls a function from the property

this.props.startTimer. You can use the this object (this.props.startTimer) in

this.startTimer because you applied bind(this).

 The Button component is stateless, which you can confirm by looking at the full

code (ch11/timer/timer.jsx). What does that mean? It means you can refactor it into

a function instead of it being a class.

222 CHAPTER 11 Project: Timer component

class Button extends React.Component {
startTimer(event) {
return this.props.startTimer(this.props.time)

}
render() {
return <button type="button" className='btn-default btn'

onClick={this.startTimer.bind(this)}>
{this.props.time} seconds

</button>
}

}

Obviously, you don’t need to use the same names for methods (such as startTimer())

in Button and TimerWrapper. A lot of people get confused during my React workshops

when I use the same names; others find it easier to trace the chain of calls when they use

the same names. Just know that you can name Button’s method something like

handleStartTimer(), for example. Personally, I find that using the same name helps me

to mentally link properties, methods, and states from different components.

 Note that Timer could also be named TimerLabel, if not for the audio play()

method. Is there room for improvement and refactoring? Absolutely! Check the

“Homework” section of this chapter.

 Congrats—you’re officially finished coding. Now, to get this thing running so you

can begin using this timer for work4 or hobbies.

11.6 Getting it running

Compile the JSX into JavaScript with the following Babel 6.9.5 command, assuming

you have the Babel CLI and its presets installed (hint: package.json!):

$./node_modules/.bin/babel timer.jsx -o timer.js -w

If you copied my build npm script from package.json at the beginning of this chapter,

then you can run npm run build.

 If you’ve done everything correctly, enjoy your beautiful timer application, shown

in figure 11.4! Turn off your music to hear the alarm when the time is up.

 Make sure the app works properly: you should see a time-remaining number that

changes every second. When you click the button, a new countdown should begin;

that is, the timer is interrupted and starts over on each click of a button.

Listing 11.6 Button component that triggers the countdown

4 Try the Pomodoro technique (https://cirillocompany.de/pages/pomodoro-technique) for increasing your
productivity.

Kick-starts or resets
the timer with the
proper time value

Renders the
Button UI

Captures onClick

223Summary

11.7 Homework

For bonus points, do the following:

 Convert Timer to a stateless component implemented by a fat-arrow function.

 Implement a Pause/Resume button that stops/resumes the timer.

 Implement a Cancel button that stops the countdown and hides the time

remaining.

 Implement a Reset button that resets the time remaining to the original value

(5, 10, or 15 seconds).

 Modify the final version of this project to use 5, 10, and 15 minutes, rather than

seconds.

 Decouple the <audio> tag in TimerWrapper from play() in Timer.

 Refactor the project to have four files—timer.jsx, timer-label.jsx, timer-button.jsx,

and timer-sound.jsx—with as much loose coupling as possible.

 Implement a slider button that changes with every time interval (chapter 6 dis-

cusses slider integration).

Submit your code in a new folder under ch11 as a pull request to this book’s GitHub

repository: https://github.com/azat-co/react-quickly.

11.8 Summary

 Keep components simple and as close to representational as possible.

 Pass functions as values of properties, not just data.

 Two components can exchange data between each other via a parent.

Figure 11.4 Clicking 15 Seconds

launched the timer. Now it says

that 14 seconds remain.

Part 2

React architecture

Welcome to part 2. Now that you know the most important concepts, fea-

tures, and patterns of React, you’re ready to embark on your own React journey.

Part 1 prepared you to build simple UI elements; and the bottom line is, if you’re

building web UIs, core React is sufficient. But to build full-blown, front-end apps,

React developers rely on open source modules written by the React community.

Most of these modules are hosted on GitHub and npm, so they’re within easy

reach—you can grab them and go.

 These chapters cover the most-popular, most-used, mature libraries that,

together with core React, form the React stack (or React and friends, as some devel-

opers jokingly call this ensemble). To get started, in chapters 12–17, you’ll learn

about using Webpack for asset pipelines, React Router for URL routing, Redux

and GraphQL for data flow, Jest for testing, and Express and Node for Universal

React. Then, as in part 1, chapters 18–20 present real-world projects.

 This may seem like a lot, but my experience with reading and writing books

has shown me that baby steps and textbook examples don’t provide good value

for readers and don’t show how things work in real life. So, in this part of the

book, you’ll both learn about and work with the React stack. Interesting, com-

plex projects await you. When you’ve finished, you’ll be knowledgeable about

data flow, skilled in setting up the monstrosity called Webpack, and able to talk

like a know-it-all at local meetups.

 Read on.

227

 The Webpack build tool

Before we go any further with the React stack (a.k.a. React and friends), let’s look

at a tool that’s essential to most modern web development: a build tool (or bun-

dler). You’ll use this tool in subsequent chapters to bundle your many code files

into the minimum number of files needed to run your applications and prepare

them for easy deployment. The build tool you’ll be using is Webpack

(https://webpack.js.org).

 If you’ve not come across a build tool before, or if you’ve used another one such

as Grunt, Gulp, or Bower, this chapter is for you. You’ll learn how to set up Web-

pack, configure it, and get it running against a project.

 This chapter also covers hot module replacement (HMR), a feature of Webpack

that enables you to hot-swap updated modules for those running on a live server.

First, though, we’ll look at what Webpack can do for you.

This chapter covers

 Adding Webpack to a project

 Modularizing your code

 Running Webpack and testing the build

 Performing hot module replacement

Watch this chapter’s introduction video by

scanning this QR code with your phone or going

to http://reactquickly.co/videos/ch12.

228 CHAPTER 12 The Webpack build tool

NOTE Code generators such as create-react-app (https://github.com/
facebookincubator/create-react-app) create boilerplate/scaffolding code and
help you start projects quickly. create-react-app also uses Webpack and
Babel, along with other modules. But this book primarily teaches fundamen-
tals, so you won’t use a code generator; instead, you’ll do the setup yourself to
make sure you understand each part. If you’re interested, you can learn how
to use a code generator for yourself—it just takes a few commands.

NOTE The source code for the examples in this chapter is at www.manning
.com/books/react-quickly and https://github.com/azat-co/react-quickly/
tree/master/ch12 (in the ch12 folder of the GitHub repository https://
github.com/azat-co/react-quickly). You can also find some demos at http://
reactquickly.co/demos.

12.1 What does Webpack do?

Have you ever wondered why (in web development) everyone and their mother are

talking about Webpack? Webpack’s core focus is optimizing the JavaScript you write so

that it’s contained in as few files as possible for a client to request. This reduces the

strain on the servers for popular sites and also reduces the client’s page-load time. Of

course, it’s not as simple as that. JavaScript is often written in modules that are easy to

reuse. But they often depend on other modules that may depend on other modules,

and so on; and keeping track of what needs to be loaded when so that all the depen-

dencies resolve quickly can be a headache.

 Let’s say you have a utility module myUtil, and you use it in many React compo-

nents—accounts.jsx, transactions.jsx, and so on. Without a tool like Webpack, you’d

have to manually keep track of the fact that each time you use one of those compo-

nents, you need to include myUtil as a dependency. Additionally, you might be load-

ing myUtil unnecessarily for a second or third time, because another component that

depends on myUtil has already loaded it. Of course, this is a simplified example; real

projects have dozens or even hundreds of dependencies that are used in other depen-

dencies. Webpack can help.

 Webpack knows how to deal with all three types of JavaScript module—CommonJS

(www.commonjs.org), AMD (https://github.com/amdjs/amdjs-api/wiki/AMD), and

ES6 (http://mng.bz/VjyO)—so you don’t need to worry if you’re working with a

hodgepodge of module types. Webpack will analyze the dependencies for all the

JavaScript in your project and do the following:

 Ensure that all dependencies are loaded in the correct order

 Ensure that all dependencies are loaded only once

 Ensure that your JavaScript is bundled into as few files as possible (called static

assets)

229Adding Webpack to a project

Webpack also supports code splitting and asset hashing, which let you identify blocks of

code that are required only under certain circumstances. These blocks are split out to

be loaded on demand rather than bundled in with everything else. You must opt in to

use these features and further optimize your JavaScript and its deployment.

NOTE Code splitting and asset hashing are outside the scope of this book.
Check out the Webpack website for more information: https://webpack
.github.io/docs/code-splitting.html.

Webpack isn’t just about JavaScript, though. It supports the preprocessing of other

static files through the use of loaders. For example, you can do the following before

any bundling takes place:

 Precompile your JSX, Jade, or CoffeeScript files into plain JavaScript

 Precompile ES6+ code into ES5 for browsers that don’t yet support ES6

 Precompile Sass and Compass files into CSS

 Optimize sprites into a single PNG or JPG file or inline data assets

Many loaders are available for all sorts of file types. In addition, plug-ins that modify

Webpack’s behavior are catalogued on the Webpack homepage. If you can’t find what

you’re looking for, there’s documentation about how to write your own plug-in.

 For the rest of this book, you’ll be using Webpack to do the following:

 Manage and bundle dependencies from npm modules, so you don’t have to

manually download files from the internet, and include them with <script>

tags in HTML

 Transpile JSX into regular JavaScript while providing source maps for easier

debugging

 Manage styles

 Perform hot module reloading

 Build a development web server

As you’ll see, you can configure the order in which Webpack loads, precompiles, and

bundles your files using its webpack.config.js file. But first, let’s look at how to install

Webpack and get it working with a project.

12.2 Adding Webpack to a project

To illustrate how you can get starting working with Webpack, let’s slightly modify the

project from chapter 7 shown in figure 12.1. It has email and comment input fields,

two style sheets, and one Content component.

230 CHAPTER 12 The Webpack build tool

Here’s the new project structure. I’ve pointed out where it differs from the project in

chapter 7:

/email-webpack
/css

bootstrap.css
main.css

/js
bundle.js
bundle.map.js

/jsx
app.jsx
content.jsx

/node_modules
index.html
package.json
webpack.config.js
webpack.dev-cli.config.js
webpack.dev.config.js

Contrast that with the non-Webpack setup from chapter 7:

/email
/css
bootstrap.css

/js
content.js
react.js
react-dom.js
script.js

/jsx
content.jsx
script.jsx

index.html

Figure 12.1 Original email project before using Webpack

Doesn’t contain react.js
or react-dom.js filesAll the

scripts

Mapping of line
numbers for DevTools

ReactDOM.render
statement

Dependencies to compile
(Webpack, Babel, and so on)

Babel configs and
other project info

Webpack configs

Compiled script with
the main component

ReactDOM.render()
statement is in JSX

231Adding Webpack to a project

NOTE Do you have Node.js and npm? This is the best time to install them—
you’ll need them, in order to proceed. Appendix A covers installation.

This section walks you through the following steps:

1 Installing webpack

2 Installing dependencies and saving them to package.json

3 Configuring Webpack’s webpack.config.js

4 Configuring the dev server and hot module replacement

Let’s get started.

12.2.1 Installing Webpack and its dependencies

To use Webpack, you’ll need a few additional dependencies, as noted in package.json:

 Webpack—The bundler tool (npm name: webpack); use v2.4.1

 Loaders—Style, CSS, hot module replacement (HMR), and Babel/JSX preproces-

sors (npm names: style-loader, css-loader, react-hot-loader and babel-

loader, babel-core, and babel-preset-react); use the versions specified in

package.json

 The webpack-dev-server—An Express development server that lets you use HMR

(npm name: webpack-dev-server); use v2.4.2

You can install each module manually, but I recommend copying the package.json file

shown in listing 12.1 (ch12/email-webpack/package.json) from the GitHub reposi-

tory to your project root (see the project structure shown in section 12.2). Then, run

npm i or npm install from the project root (where you have package.json) to install

the dependencies. This will ensure that you don’t forget any of the 10 modules (a syn-

onym for package in Node). It also ensures that your versions are close to the ones I

used. Using wildly different versions is a fantastic way to break the app!

{
"name": "email-webpack",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {

"build": "./node_modules/.bin/webpack -w"
"wds-cli": "./node_modules/.bin/webpack-dev-server --inline --hot

➥ --module-bind 'css=style-loader!css-loader'

➥ --module-bind 'jsx=react-hot-loader!babel-loader'

➥ --config webpack.dev-cli.config.js",
"wds": "./node_modules/.bin/webpack-dev-server --config

➥ webpack.dev.config.js"
},
"author": "Azat Mardan",
"license": "MIT",

Listing 12.1 Setting up the dev environment

Saves the Webpack
build script as an npm
script for convenience

232 CHAPTER 12 The Webpack build tool

"babel": {
"presets": [

"react"
]

},
"devDependencies": {
"babel-core": "6.13.2",
"babel-loader": "6.4.1",
"babel-preset-react": "6.5.0",
"css-loader": "0.23.1",
"react": "15.5.4",
"react-dom": "15.5.4",
"react-hot-loader": "1.3.1",
"style-loader": "0.13.1",
"webpack": "2.4.1",
"webpack-dev-server": "2.4.2"

},
}

The babel property in package.json should be familiar to you from part 1 of this

book, so I won’t spend time repeating myself. As a reminder, you need this property to

configure Babel to convert JSX to JS. If you need to support browsers that can’t work

with ES6, you can add the es2015 preset to presets:

"babel": {
"presets": [
"react",
"es2015"

]
},

Also add babel-preset-es2015 to devDependencies:

"devDependencies": {
"babel-preset-es2015": "6.18.0",
...

}

In addition to new dependencies, there are new npm scripts. The commands in

scripts in package.json are optional but highly recommended, because using npm

scripts for launching and building is a best practice when working with React and

Node. Of course, you can run all the builds manually without using npm scripts, but

why type extra characters?

 You can either run Webpack with npm run build or run it directly with

./node_modules/.bin/webpack -w. The -w flag means watch—that is, continue to

monitor for any source code changes, and rebuild bundles if there are any. In other

words, Webpack will keep running to automatically make changes. Of course, you

must have all the necessary modules installed with npm i.

Tells Babel what presets to
use (React for JSX in this
case; ES6+ is optional)

Installs the Babel
loader to process JSX

Installs the CSS loader to require
CSS from JavaScript, and then
installs the Style loader to inject
CSS into a web page

Installs the
React HMR

loader

Installs
 Webpack locally
(recommended)

Installs webpack-dev-server
locally (recommended)

233Adding Webpack to a project

 The webpack -w command looks for webpack.config.js by default. You can’t run

Webpack with this configuration file. Let’s create it next.

NOTE The wds and wds-cli npm scripts in package.json are explained in sec-
tion 12.5.

12.2.2 Configuring Webpack

Webpack needs to know what to process (the source code) and how to do it (with the

loaders). That’s why there’s webpack.config.js in the root of the project structure. In a

nutshell, in this project, you’re using Webpack to do the following:

 Transform your JSX files into JS files: babel-loader, babel-core, and babel-

preset-react

 Load CSS via require and resolve url and imports in the process with css-

loader (https://github.com/webpack/css-loader)

 Add CSS by injecting the <style> element with style-loader

(https://github.com/webpack/style-loader)

 Bundle all the resulting JS files into one file called bundle.js

 Provide the proper source code–line mapping in DevTools via source maps

Webpack needs its own configuration file: email-webpack/webpack.config.js.

module.exports = {
entry: './jsx/app.jsx',
output: {

path: __dirname + '/js/',
filename: 'bundle.js'

},
devtool: '#sourcemap',
module: {

loaders: [
{ test: /\.css$/, loader: 'style-loader!css-loader' },
{

test: /\.jsx?$/,
exclude: /(node_modules)/,
loaders: ['babel-loader']

}
]

}
}

The devtool property is useful during development because it provides source maps

that show you the line numbers in source—not compiled—code. You’re now ready to

run Webpack for this project and also bootstrap any Webpack-based projects in the

future.

Listing 12.2 Webpack configuration file

Defines the file to start
bundling (typically, the main
file that loads other files)Defines a

path for the
bundled files

Defines a filename for
the bundled file you’ll
be using in index.htmlSpecifies that

you need proper
mapping of

compiled source
code lines to the
JSX source code

lines. This is
useful for

debugging and
appears in
DevTools.

Specifies the loader to
import, and then injects

CSS into the web page
from JavaScript

Specifies the loader that will
perform the JSX transformation

(and ES6+ if needed)

234 CHAPTER 12 The Webpack build tool

Webpack has a lot of features, and we’ve only covered the basics; but they’re enough

to compile JSX, provide source maps, inject and import CSS, and bundle JavaScript.

When you need more Webpack functionality, you can consult the documentation or a

book like SurviveJS by Juho Vepsäläinen (https://survivejs.com).

 Now you’re ready to use some of Webpack’s power in JSX.

12.3 Modularizing your code

As you’ll recall, in chapter 7, the email app used global objects and <script>. That’s

fine for this book or a small app. But in large apps, using globals is frowned on

because you may run into trouble with name collisions or managing multiple

<script> tags with duplicate inclusions. You can let Webpack do all the dependency

management by using CommonJS syntax. Webpack will include only needed

dependencies and package them into a single bundle.js file (based on the configs in

webpack.config.js).

 Organizing your code by modularizing it is a best practice not only for React but

also for software engineering in general. You can use Browserify, SystemJS, or another

bundler/module loader and still use CommonJS/Node.js syntax (require and

module.exports). Thus, the code in this section is transferable to other systems, once

you refactor it away from primitive globals.

 As of this writing, import (http://mng.bz/VjyO) is supported by only one

browser—Edge—and isn’t supported by Node.js. ES6 modules with import syntax will

need more work in the Webpack setup. It isn’t an exact replacement for CommonJS

require/module.exports syntax, because those commands work differently. For this

reason, the following listing (ch12/email-webpack/app.jsx) refactors app.jsx to use

require() and module.exports instead of global objects and HTML <script>. Due to

the use of style-loader, you can require CSS files as well. And because of the Babel

loader, you can require JSX files.

Configuration files

If you wish, you can have more than one configuration file. These files can come in

handy for development, production, testing, and other builds. In the example’s proj-

ect structure, I created these files:

webpack.dev-cli.config.js
webpack.dev.config.js

Naming doesn’t matter as long as you and your teammates can understand the

meaning of each file. The name is passed to Webpack with --config. You’ll learn

more about these configuration files in section 12.4.

235Modularizing your code

require('../css/main.css')

const React = require('react')
const ReactDOM = require ('react-dom')
const Content = require('./content.jsx')

ReactDOM.render(
<Content />,
document.getElementById('content')

)

In contrast, ch07/email/jsx/script.jsx looks like this:

ReactDOM.render(
<Content />,
document.getElementById('content')

)

The old file is smaller, but this is one of the rare cases in which less isn’t more. It relies

on the global Content, ReactDOM, and React objects, which, as I just explained, is a

bad practice.

 In content.jsx, you can use require() in a similar way. The code for construc-

tor(), submit(), and render() doesn’t change:

const React = require('react')
const ReactDOM = require('react-dom')

class Content extends React.Component {
constructor(props) {

// ...
}
submit(event) {
// ...

}
render() {

// ...
}

}

module.exports = Content

The index.html file needs to point to the bundle that Webpack creates for you: the

js/bundle.js file. Its name is specified in webpack.config.js, and now you need to add

it. It will be created after you run npm run build. Here’s the new index.html code:

Listing 12.3 Refactoring app.jsx

Imports CSS, which, thanks to the
style and css loaders, will be imported
and injected into the web page

Imports React for <> syntax:
React.createElement()

Imports Content

Imports React

Imports ReactDOM

Exports Content

236 CHAPTER 12 The Webpack build tool

<!DOCTYPE html>
<html>

<head>
<link href="css/bootstrap.css" type="text/css" rel="stylesheet"/>

</head>

<body>
<div id="content" class="container"></div>
<script src="js/bundle.js"></script>

</body>

</html>

Note that you also remove the reference to the stylesheet main.css from index.html.

Webpack will inject a <style> element with a reference to main.css into index.html

for you, because of require('main.css') in app.jsx. You can use require() for boot-

strap.css as well.

 That’s the last step in refactoring your project.

12.4 Running Webpack and testing the build

This is the moment of truth. Run $ npm run build, and compare your output with the

following:

> email-webpack@1.0.0 build

➥ /Users/azat/Documents/Code/react-quickly/ch12/email-webpack
> webpack -w

Hash: 2ffe09fff88a4467788a
Version: webpack 1.12.9
Time: 2545ms

Asset Size Chunks Chunk Names
bundle.js 752 kB 0 [emitted] main

bundle.js.map 879 kB 0 [emitted] main
+ 177 hidden modules

If there are no errors and you can see newly created bundle.js and bundle.js.map files

in the js folder, bingo! Now spin up your favorite web server (perhaps node-static or

http-server), and check the web app. You’ll see that it’s logging emails and comments

in the console.

 As you can see, incorporating Webpack into a project is straightforward and yields

great results.

177 hidden modules—or, the Webpack bundle under the hood

There are 177 modules in ch12/email-webpack/js/bundle.js! You can open the file

and search for webpack_require(1), webpack_require(2), and so on, through

webpack_require(176), which is the Content component. The followed compiled

code from app.jsx imports Content (lines 49–53 in bundle.js):

237Running Webpack and testing the build

At a bare minimum, you’re ready to use Webpack for the rest of this book. But I

strongly recommend that you set up one more thing: hot module replacement

(HMR), which can speed up development dramatically. Before we proceed with React

development, let’s look at this great Webpack feature.

(continued)

const React = __webpack_require__(5);
const ReactDOM = __webpack_require__(38);
const Content = __webpack_require__(176);

ReactDOM.render(React.createElement(Content, null),

➥ document.getElementById('content'));

ESLint and Flow

I want to mention two other useful development tools. Obviously, they’re optional, but

they’re a pretty big deal.

ESLint (http://eslint.org, npm name eslint) can take predefined rules or sets of

rules and make sure your code (JS or JSX) adheres to the same standards. For exam-

ple, how many spaces is an indent—four or two? Or, what if you accidentally put a

semicolon in your code? (Semicolons are optional in JavaScript, and I prefer not to

use them.) ESLint will even give you a warning about unused variables. It can prevent

bugs from sneaking into your code! (Not all of them, of course.)

Check out “Getting Started with ESLint” (http://eslint.org/docs/user-guide/getting-

started). You’ll also need eslint-plugin-react (https://github.com/yannickcr/

eslint-plugin-react). Make sure you add the React rules to .eslintrc.json (the full code

is in the ch12/email-webpack-eslint-flow folder):

"rules": {
"react/jsx-uses-react": "error",
"react/jsx-uses-vars": "error",

}

Here’s an example of some warnings from running ESLint React on ch12/email-web-

pack-lint-flow/jsx/content.jsx:

/Users/azat/Documents/Code/react-quickly/ch12/

➥ email-webpack-lint-flow/jsx/content.jsx
9:10 error 'event' is defined but never used no-unused-vars

12:5 error Unexpected console statement no-console
12:17 error Do not use findDOMNode react/no-find-dom-node
13:5 error Unexpected console statement no-console
13:17 error Do not use findDOMNode react/no-find-dom-node

238 CHAPTER 12 The Webpack build tool

(continued)

Next, Flow (https://flowtype.org, npm name flow-bin) is a static type-checking tool

you can use to add a special comment (// @flow) to your scripts and types. Yes!

Types in JavaScript! Rejoice, if you’re a software engineer with a preference for

strongly typed languages like Java, Python, and C. Once you’ve added the comment,

you can run a Flow check to see whether there are any issues. Again, this tool can

prevent some pesky bugs:

// @flow

var bookName: string = 13
console.log(bookName) // number. This type is incompatible with string

Flow has extensive documentation: see “Getting started with Flow” (https://flowtype

.org/docs/getting-started.html) and “Flow for React” (https://flowtype.org/docs/

react.html).

You can configure Atom or any other modern code editor to work with ESLint and Flow

to catch problems on the fly.

You can find the email project code with ESLint v3.8.1 and Flow v0.33.0 in the

ch12/email-webpack-eslint-flow folder.

The Atom code editor supports Flow, which shows issues in the bottom pane and marks on the

code line during development.

239Hot module replacement

12.5 Hot module replacement

Hot module replacement (HMR) is one of the coolest features of Webpack and React.

It lets you write code and test it more quickly by updating the browser with changes

while preserving the app’s state.

 Say you’re working on a complex single-page web application, and getting to the

current page you’re working on takes 12 clicks. If you upload new code to the site,

then to get it running, you have to click Reload/Refresh in your browser and repeat

those 12 clicks. If you’re using HMR, on the other hand, there are no page reloads,

and your changes are reflected on the page.

 HMR’s primary benefit is that you can iterate (write, test, write, test, and so on)

more quickly, because your app will save state when you make changes. Some develop-

ers consider HMR so groundbreaking that if React didn’t have any other features, they

would still use it just for HMR!

 For the nitty-gritty details of how the HMR process works, see the documentation at

http://mng.bz/L9d5. This section covers the practical application of this technology

as it pertains to the example email form.

 The process of hot-updating code requires multiple steps, shown in a simplified

form in figure 12.2. Webpack HMR and the dev server use WebSockets to monitor

update notifications from the server. If there are any, the front end gets chunks

(JavaScript code) and an update manifest (JSON), which are basically the delta of the

changes. The front-end app preserves its state (such as data in an input field or a

screen position), but the UI and code change. Magic.

 To see HMR in an example, you’ll use a new configuration file and webpack-dev-server

(WDS). It’s possible to use HMR with your own server, built with Express/Node; WDS is

Webpack

dev server

1. App source code to

 Webpack dev server

2. Compiled code for app

7. Updated source

 code to server

3. WebSockets monitors server for updates

8. Update: chunks (JS) and update manifest

 (JSON); state changes preserved

4. App running

 (in browser)

5. Developer works in

 app (state changes)

6. Developer changes source code

Source

code

Figure 12.2 Webpack listens for code changes and sends update notifications along with updates to the running

app in the browser.

240 CHAPTER 12 The Webpack build tool

optional, but it’s provided by Webpack as a separate webpack-dev-server module, so I’ll

cover it here.

 Once everything is configured, you’ll enter an email in the form and make a few

changes in the code. Thanks to HMR, you’ll see that the entered email remains on the

form and your changes are propagated to the web app.

12.5.1 Configuring HMR

First, duplicate webpack.config.js by creating a copy named webpack.dev.config.js:

$ cp webpack.config.js webpack.dev.config.js

Next, open the newly created webpack.dev.config.js file. You need to add a few things

such as new entry points, a public path, and the HMR plug-in, and set the dev-server

flag to true. The following listing shows the final file (ch12/email-webpack/

webpack.dev.config.js).

const webpack = require('webpack')

module.exports = {
entry: [
'webpack-dev-server/client/?http://localhost:8080',
'./jsx/app.jsx'

],
output: {
publicPath: 'js/',
path: __dirname + '/js/',
filename: 'bundle.js'

},
devtool: '#sourcemap',
module: {
loaders: [

{ test: /\.css$/, loader: 'style-loader!css-loader' },
{

test: /\.jsx?$/,
exclude: /(node_modules)/,
loaders: ['react-hot-loader', 'babel-loader']

}
]

},
devServer: {
hot: true

},
plugins: [new webpack.HotModuleReplacementPlugin()]

}

You need to tell WDS to use this new configuration file by providing the --config

option:

Listing 12.4 webpack-dev-server and HMR configuration

Imports the
webpack module

Includes WDS

Includes the main app

Sets the path for WDS to
make bundle.js available
(it won’t write to disk)

Includes react-hot-loader
to automatically enable
HMR on all JSX files

Sets WDS to
HMR mode

Includes the
HMR plug-in

241Hot module replacement

./node_modules/.bin/webpack-dev-server --config webpack.dev.config.js

Save this in package.json for convenience, if you don’t have it there already. As you’ll

recall, react-hot-loader is in the dependencies. This module enables HMR for all

JSX files (which are in turn converted to JS).

 I prefer to enable HMR for all files with react-hot-loader. But if you want to have

HMR only for certain modules, not all of them, don’t use react-hot-loader; instead,

opt in manually by adding the module.hot.accept() statement to the JSX/JS modules

you want to cherry-pick for HMR. This module.hot magic comes from Webpack. It’s

recommended that you check whether module.hot is available:

if(module.hot) {
module.hot.accept()

}

That’s a lot of configurations! But there’s another way to use and configure Webpack:

you can use command-line options and pack some configs in the commands.

 If you prefer to use the command line, be my guest. Your config file will be smaller,

but the commands will be bigger. For example, this webpack.dev-cli.config.js file has

fewer configs:

module.exports = {
entry: './jsx/app.jsx',
output: {
publicPath: 'js/',
path: __dirname + '/js/',
filename: 'bundle.js'

},
devtool: '#sourcemap',
module: {
loaders: [

{
test: /\.jsx?$/,
exclude: /(node_modules)/,
loaders: []

}
]

}
}

But it uses more CLI options:

./node_modules/.bin/webpack-dev-server --inline --hot

➥ --module-bind 'css=style-loader!css-loader'

➥ --module-bind 'jsx=react-hot-loader!babel-loader'

➥ --config webpack.dev-cli.config.js

242 CHAPTER 12 The Webpack build tool

Several things are happening here. First, --inline and --hot include the entries

enabling WDS and HMR mode. Then, you pass your loaders with --module-bind using

the following syntax:

fileExtension=loader1!loader2!...

Make sure react-hot is before babel; otherwise, you’ll get an error.

 When it comes to using the CLI or a full config file, the choice is yours. I find the

CLI approach better for simpler builds. To avoid crying later when you discover that

you mistyped this monstrosity of a command, you should save the command as an

npm script in package.json. And no, batch/shell scripts/Make scripts aren’t cool any-

more. Use npm scripts, like all the cool kids do! (Disclaimer: This is a joke. I’m not

advocating fashion-driven development.)

npm scripts

npm scripts offer certain advantages, and they’re commonly used in Node and React

projects. They’ve become a de facto standard, and you’ll generally find them when

you first learn about a project. When I start working on a new project or library, the

npm scripts are the first place I look, after readme.md—and sometimes instead of

readme.md, which may be out of date.

npm scripts offer a flexible way to save essential scripts for testing, building, seeding

with data, and running in development or other environments. In other words, any

work that’s performed via the CLI and related to the app but that isn’t the app itself

can be saved to npm scripts. They function as documentation, as well, to show

others how building and testing work. You can call other npm scripts from npm

scripts, thus simplifying your project further. The following example includes different

versions of builds:

"scripts": {
"test": "echo \"Error: no test specified\" && exit 1",
"build": "./node_modules/.bin/babel -w",
"build:method": " npm run build -- method/jsx/script.jsx -o

➥ method/js/script.js",
"build:hello-js-world-jsx": "npm run build --

➥ hello-js-world-jsx/jsx/script.jsx -o

➥ hello-js-world-jsx/js/script.js",
"build:hello-world-jsx": "npm run build --

➥ hello-world-jsx/jsx/script.jsx -o

➥ hello-world-jsx/js/script.js",
"build:hello-world-class-jsx": "npm run build --

➥ hello-world-class-jsx/jsx/script.jsx -o

➥ hello-world-class-jsx/js/script.js"
},

243Hot module replacement

12.5.2 Hot module replacement in action

Go ahead and start WDS with npm run wds or npm run wds-cli. Then, go to

http://localhost:8080 and open the DevTools console. You’ll see messages from HMR

and WDS, as follows:

[HMR] Waiting for update signal from WDS...
[WDS] Hot Module Replacement enabled.

Enter some text in the email or comment field, and then change content.jsx. You can

modify something in render()—for example, change the form text from Email to

Your Email:

Your Email: <input ref="emailAddress" className="form-control" type="text"

➥ placeholder="hi@azat.co"/>

(continued)

npm scripts also support pre and post hooks, which makes them even more versa-

tile. In general, a hook is a pattern in which some code is triggered when another

event happens. For example, you can create a learn-react task along with two

tasks that have pre and post hooks: prelearn-react and postlearn-react. As

you may guess, the pre hook will be executed before learn-react, and the post
hook will be executed after learn-react. For example, these bash scripts

"scripts": {
"prelearn-react": "echo \"Purchasing React Quickly\"",
"learn-react": "echo \"Reading React Quickly\" ",
"postlearn-react": "echo \"Creating my own React app\""

},

print the following output, based on the pre / post order:

...
Purchasing React Quickly
...
Reading React Quickly
...
Creating my own React app

With pre and post hooks, npm can easily replace some build steps performed by

Webpack, Gulp, or Grunt.

See the documentation at https://docs.npmjs.com/misc/scripts and Keith Cirkel’s

article “How to Use npm as a Build Tool” (www.keithcirkel.co.uk/how-to-use-npm-as-

a-build-tool) for more npm tips, including parameters and arguments. Any functionality

that’s missing with npm scripts can be implemented from scratch as a Node script.

The advantage is that you’ll have fewer dependencies on plug-ins for your project.

244 CHAPTER 12 The Webpack build tool

You’ll see some logging:

[WDS] App updated. Recompiling...
...
[HMR] App is up to date.

Then your changes will appear on the web page, as shown in figure 12.3, along with the

text you entered previously. Great—you no longer need to waste time entering test data

or navigating deep inside nested UIs! You can spend more time doing important things

instead of typing and clicking around the front-end app. Development is faster with HMR!

NOTE HMR isn’t bulletproof. It won’t update or fail in some situations. WDS

will reload the page (live reload) when that happens. This behavior is con-
trolled by webpack/hot/dev-server; another option is to reload manually
using webpack/hot/only-dev-server.

Webpack is a nice tool to use with React to streamline and enhance your bundling. It’s

great not only for optimizing code, images, styles, and other assets when you deploy,

but also for development, thanks to WDS and HMR.

Figure 12.3 HMR updated the view from “Email” to “Your Email” without erasing

the data in the fields, as shown in the log.

245Quiz answers

12.6 Quiz

1 What is the command to run the dev npm script ("dev": "./node_modules/

.bin/webpack-dev-server --config webpack.dev.config.js”)? npm dev, npm

run dev, NODE_ENV=dev npm run, or npm run development

2 HMR is just a React term for live reloading. True or false?

3 WDS will write compiled files to disk, just like the webpack command. True or

false?

4 webpack.config.js must be a valid JSON file, just like package.json. True or false?

5 What loaders do you need to use in order to import and then inject CSS into a

web page using Webpack?

12.7 Summary

 To make hot module replacement work, you need webpack-dev-server and

react-hot-loader in your config or module.hot.accept() in files.

 You can use require() to load CSS with style-loader and css-loader.

 The --inline --hot options with CLI commands launch WDS in hot inline

mode.

 devtool: '#sourcemap' enables proper line numbers for compiled code.

 publicPath is a WDS setting that tells WDS where to put the bundle.

12.8 Quiz answers

1npm run dev. Only start and test npm scripts can be run without run. All other

scripts follow npm run NAME syntax.

2False. HMR can replace live reloading and fall back to it when HMR fails; but HMR

is more advanced and offers more benefits, such as updating only parts of your

app and preserving the app’s state.

3False. WDS only serves files without writing them to disk.

4False. webpack.config.js is a default Webpack configuration file. It must be a

Node.js/JavaScript file with the CommonJS/Node.js module exporting the object

literal for configurations (the object can have double quotes, akin to JSON).

5The style loader imports, and the CSS loader injects.

246

React routing

In the past, in many single-page applications, the URL rarely, if ever, changed as you

progressed through the app. There was no reason to go to the server, thanks to

browser rendering! Only the content on part of the page changed. This approach

had some unfortunate consequences:

 Refreshing your browser took you back to the original form of the page you

were reading.

 Clicking the Back button in your browser might take you to a completely dif-

ferent site, because the browser’s history function only recorded a single URL

for the site you were on. There were no URL changes reflecting your naviga-

tion between content.

 You couldn’t share a precise page on the site with your friends.

 Search engines couldn’t index the site because there were no distinct URLs

to index.

This chapter covers

 Implementing a router from scratch

 Working with React Router

 Routing with Backbone

Watch this chapter’s introduction video by

scanning this QR code with your phone or going

to http://reactquickly.co/videos/ch13.

247Implementing a router from scratch

Fortunately, today we have browser URL routing. URL routing lets you configure an

application to accept request URLs that don’t map to physical files. Instead, you can

define URLs that are semantically meaningful to users, that can help with search-

engine optimization (SEO), and that can reflect your application’s state. For example,

a URL for a page that displays product information might be

https://www.manning.com/books/react-quickly

This is neatly mapped behind the scenes to a single page that displays the product

with ID react-quickly. As you browse various products, the URL can change, and

both the browser and search engines will be able to interact with the product pages as

you’d expect. If you want to avoid complete page reloads, you can use a hash (#) in

your URLs, as these well-known sites do:

https://mail.google.com/mail/u/0/#inbox
https://en.todoist.com/app?v=816#agenda%2Foverdue%2C%20today
https://calendar.google.com/calendar/render?tab=mc#main_7

URL routing is a requirement for a user-friendly, well-designed web app. Without spe-

cific URLs, users can’t save or share links without losing the state of the application, be

it a single-page application (SPA) or a traditional web app with server rendering.

 In this chapter, you’ll build a simple React website and learn about a couple of dif-

ferent options for implementing routing within it. I’ll introduce the React Router

library later in the chapter; first, let’s build some simple routing from scratch.

NOTE The source code for the examples in this chapter is at www.manning
.com/books/react-quickly and https://github.com/azat-co/react-quickly/
tree/master/ch13 (in the ch13 folder of the GitHub repository https://
github.com/azat-co/react-quickly). You can also find some demos at http://
reactquickly.co/demos.

13.1 Implementing a router from scratch

Although there are existing libraries that implement routing for React, let’s start by

implementing a simple router to see how easy it is. This project will also help you

understand how other routers work under the hood.

 The end goal of this project is to have three pages that change along with the URL

when you navigate around. You’ll use hash URLs (#) to keep things simple; non-hash

URLs require a special server configuration. These are the pages you’ll create:

 Home—/ (empty URL path)

 Accounts—/#accounts

 Profile—/#profile

Figure 13.1 shows the navigation from the home page to the Profile page.

248 CHAPTER 13 React routing

To implement this project, which will demonstrate and use a URL router, you’ll create

a router component (router.jsx), a mapping, and an HTML page. The router compo-

nent will take information from the URL and update the web page accordingly. The

implementation of the project breaks down into these steps:

1 Write the mapping between the URL entered and the resource to be shown

(React elements or components). Mapping is app-specific, and a different map-

ping will be needed for each new project.

2 Write the router library from scratch. It will access the requested URL and check

the URL against the mapping (step 1). The router library will be a single Router

component in router.jsx. This Router can be reused without modifications in

various projects.

3 Write the example app, which will use the Router component from step 2 and the

mapping from step 1.

You’ll use JSX to create React elements for the markup. Obviously, Router doesn’t

have to be a React component; it can be a regular function or a class. But using a

React component reinforces concepts you’ve learned about in this book, such as event

lifecycles and taking advantage of React’s rendering and handling of the DOM. In

addition, your implementation will be closer to the React Router implementation,

which will help you understand React Router better when we discuss it later.

13.1.1 Setting up the project

The structure of the project (which you can call a simple or naive router) is as follows:

/naive-router
/css
bootstrap.css
main.css

/js
bundle.js

/jsx
app.jsx

Figure 13.1 Navigating from the home page to the Profile page and changing the URL by clicking a link

249Implementing a router from scratch

router.jsx
/node_modules
index.html
package.json
webpack.config.js

You’ll begin by installing dependencies. I put them in package.json; you can copy the

dependencies as well as the babel config and scripts, and run npm install

(ch13/naive-router/package.json).

{
"name": "naive-router",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1",
"build": "./node_modules/.bin/webpack -w"

},
"author": "Azat Mardan",
"license": "MIT",
"babel": {
"presets": [

"react"
]

},
"devDependencies": {
"babel-core": "6.18.2",
"babel-loader": "6.2.4",
"babel-preset-react": "6.5.0",
"webpack": "2.4.1"
"react": "15.5.4",
"react-dom": "15.5.4"

},
"dependencies": {
}

}

This isn’t all. Webpack needs its own configuration file, webpack.config.js (as

explained in chapter 9). The key is to configure the source (entry) and the desired

destination (output). You also need to provide the loader.

module.exports = {
entry: './jsx/app.jsx',
output: {

path: __dirname + '/js/',
filename: 'bundle.js'

},

Listing 13.1 Setting up the dev environment

Listing 13.2 webpack.config.js

Saves the Webpack build
script as an npm script

for convenience

Tells Babel what presets to
use (React for JSX in this
case; ES6+ is optional)

Installs Webpack v2.4.1
locally (recommended)

Defines the file to start
bundling (typically the main
file that loads other files)

Defines a path for
the bundled files

Defines a
filename for

the bundled file
that you’ll use
in index.html

250 CHAPTER 13 React routing

module: {
loaders: [
{

test: /\.jsx?$/,
exclude: /(node_modules)/,
loader: 'babel-loader'

}
]

}
}

13.1.2 Creating the route mapping in app.jsx

First, you’ll create a mapping with a mapping object, where the keys are URL fragments

and the values are the content of the individual pages. A mapping takes a value and

ties/connects it to another value. In this case, the key (URL fragment) will map to JSX.

You could create a separate file for each page, but for now let’s keep them all in app.jsx.

const React = require('react')
const ReactDOM = require ('react-dom')
const Router = require('./router.jsx')

const mapping = {
'#profile': <div >Profile (home)</div>,
'#accounts': <div >Accounts (home)</div>,
'*': <div>Dashboard

Profile

Accounts
</div>

}

ReactDOM.render(
<Router mapping = {mapping}/>,
document.getElementById('content')

)

Next, you’ll implement Router in router.jsx.

13.1.3 Creating the Router component in router.jsx

In a nutshell, Router needs to take information from the URL (#profile) and map it

to JSX using the mapping property provided to it. You can access the URL from the

window.location.hash of the browser API:

const React = require('react')
module.exports = class Router extends React.Component {

constructor(props) {

Listing 13.3 Route mapping (app.jsx)

Specifies the loader that will
perform JSX transformation
(and ES6+ if needed)

Uses CommonJS require()
to import modules with
Webpack bundling

Uses a route mapping object that
maps routes to individual pages

Passes the
mapping to Router

251Implementing a router from scratch

super(props)
this.state = {hash: window.location.hash}
this.updateHash = this.updateHash.bind(this)

}
render() {
...

}
}

Next, you need to listen for any URL changes with hashchange. If you don’t imple-

ment listening to new URLs, then your router will work only once: when the entire

page reloads and the Router element is created. The best places to attach and remove

listeners for hashchange are the componentDidMount() and componentWillUnmount()

lifecycle event listeners:

updateHash(event) {
this.setState({hash: window.location.hash})

}
componentDidMount() {

window.addEventListener('hashchange', this.updateHash, false)
}
componentWillUnmount() {

window.removeEventListener('hashchange', this.updateHash, false)
}

In render(), you use if/else to see whether there’s a match with the current URL

value (this.state.hash) and the keys/attributes/properties in the mapping property.

If so, you access mapping again to get the content of the individual page (JSX). If not,

you fall back to * for all other URLs, including the empty value (home page). Here’s

the complete code (ch13/naive-router/jsx/router.jsx).

const React = require('react')
module.exports = class Router extends React.Component {

constructor(props) {

Listing 13.4 Implementing a URL router

componentDidMount() and componentWillUnmount()

Chapter 5 discusses lifecycle events, but here’s a refresher. componentDidMount()
is fired when an element is mounted and appears in the real DOM node (you can say

that an element has a real DOM node). For this reason, this is the safest place to

attach events that integrate with other DOM objects, and also to make AJAX/XHR

calls (not used here).

On the other hand, componentWillUnmount() is the best place to remove event lis-

teners; your element will be unmounted, and you need to remove whatever you cre-

ated outside of this element (such as an event listener on window). Leaving a lot of

event listeners hanging around without the elements that created and used them is

a bad practice: it leads to performance issues such as memory leaks.

252 CHAPTER 13 React routing

super(props)
this.state = {hash: window.location.hash}
this.updateHash = this.updateHash.bind(this)

}
updateHash(event) {
this.setState({hash: window.location.hash})

}
componentDidMount() {
window.addEventListener('hashchange', this.updateHash, false)

}
componentWillUnmount() {
window.removeEventListener('hashchange', this.updateHash, false)

}
render() {
if (this.props.mapping[this.state.hash])

return this.props.mapping[this.state.hash]
else

return this.props.mapping['*']
}

}

Finally, in index.html, you include the CSS file and bundle.js that Webpack will produce

when you run npm run build (which in turn runs ./node_modules/.bin/webpack -w):

<!DOCTYPE html>
<html>

<head>
<link href="css/bootstrap.css" type="text/css" rel="stylesheet"/>
<link href="css/main.css" type="text/css" rel="stylesheet"/>

</head>

<body>
<div id="content" class="container"></div>
<script src="js/bundle.js"></script>

</body>

</html>

Run the bundler to get bundle.js, and open the web page in a browser. Clicking the links

changes the URL as well as the content of the page, as shown earlier in figure 13.1.

 As you can see, building your own router with React is straightforward; you can use

lifecycle methods to listen for changes in the hash and render the appropriate con-

tent. But although this is a viable option, things become more complex if you need

nested routes, use route parsing (extracting URL parameters), or use “nice” URLs

without #. You could use a router from Backbone or another front-end, MVC-like

framework, but there’s a solution designed for React specifically (hint: it uses JSX).

13.2 React Router

React is amazing at building UIs. If I haven’t convinced you yet, go back and reread

the previous chapters! It can also be used to implement simple URL routing from

scratch, as you’ve seen with router.jsx.

Assigns an initial
URL hash value

Feeds new URL hash values

Renders the content
corresponding to the
URL hash

253React Router

 But for more-sophisticated SPAs, you’ll need more features. For instance, pass-

ing a URL parameter is a common feature to signify an individual item rather than a

list of items: for example, /posts/57b0ed12fa81dea5362e5e98, where 57b0ed12-

fa81dea5362e5e98 is a unique post ID. You could extract this URL parameter using a

regular expression; but sooner or later, if your application grows in complexity, you

may find yourself reinventing existing implementations for front-end URL routing.

Major frameworks such as Ember, Backbone, and Angular have routing built in to them.

When it comes to routing and React, React Router (react-router; https://

github.com/reactjs/react-router) is a ready-to-go, off-the-shelf solution. Section 13.4

covers a Backbone implementation and illustrates how nicely React plays with this MVC-

like framework that many people use for SPAs. Right now, let’s focus on React Router.

 React Router isn’t part of the official React core library. It came from the commu-

nity, but it’s mature and popular enough that a third of React projects use it.1 It’s a

default option for most React engineers I’ve talked to.

 The syntax of React Router uses JSX, which is another plus because it allows you to

create more-readable hierarchical definitions than you can with a mapping object (as

you saw in the previous project). Like the naive Router implementation, React Router

has a Router React component (React Router inspired my implementation!). Here

are the steps you’ll follow:

1 Create a mapping in which URLs will translate into React components (which

turn into markup on a web page). In React Router, this is achieved by passing

the path and component properties as well as nesting Route. The mapping is

done in JSX by declaring and nesting Route components. You must implement

this part for each new project.

1 React.js Conf 2015, “React Router Increases Your Productivity,” https://youtube.com/watch?v=XZfvW1a8Xac.

Semantic URLs

Semantic or nice URLS (https://en.wikipedia.org/wiki/Semantic_URL) are aimed at

improving the usability and accessibility of a website or web app by decoupling the

internal implementation from the UI. A non-semantic approach might use query

strings and/or script filenames. On the other hand, the semantic way embraces using

the path only in a manner that helps users interpret the structure and manipulate the

URLs. Here are some examples:

Non-semantic (okay) Semantic (better)

http://webapplog.com/show?post=es6 http://webapplog.com/es6

https://www.manning.com/books/react-

quickly?a_aid=a&a_bid=5064a2d3

https://www.manning.com/books/react-

quickly/a/5064a2d3

http://en.wikipedia.org/w/index.php?title

=Semantic_URL

https://en.wikipedia.org/wiki/Semantic_URL

254 CHAPTER 13 React routing

2 Use the React Router’s Router and Route components, which perform the

magic of changing views according to changes in URLs. Obviously, you won’t

implement this part, but you’ll need to install the library.

3 Render Router on a web page by mounting it with ReactDOM.render() like a regular

React element. Needless to say, this part must be implemented for each new project.

You’ll use JSX to create a Route for each page, and nest them either in another Route

or in Router. The Router object goes in the ReactDOM.render() function, like any

other React element:

ReactDOM.render((
<Router ...>
<Route ...>

<Route ../>
...

</Route>
<Route .../>

</Router>
), document.getElementById('content'))

Each Route has at least two properties: path, which is the URL pattern to match to trig-

ger this route; and component, which fetches and renders the necessary component.

You can have more properties for a Route, such as event handlers and data. They’ll be

accessible in props.route in that Route component. This is how you pass data to

route components.

 To illustrate, let’s consider an example of an SPA with routing to a few pages:

About, Posts (like a blog), an individual Post, Contact Us, and Login. They have differ-

ent paths and render from different components:

 About—/about

 Posts—/posts

 Post—/post

 Contact—/contact

The About, Posts, Post, and Contact Us pages will use the same layout (Content com-

ponent) and render inside it. Here’s the initial React Router code (not the complete,

final version):

<Router>
<Route path="/" component={Content} >
<Route path="/about" component={About} />

<Route path="/about/company" .../>
<Route path="/about/author" .../>

<Route path="/posts" component={Posts} />
<Route path="/posts/:id" component={Post}/>
<Route path="/contact" component={Contact} />

</Route>
</Router>

255React Router

Interestingly, you can nest routes to reuse layouts from parents, and their URLs can be

independent of nesting. For instance, it’s possible to have a nested About component

with the /about URL, even though the “parent” layout route Content uses /app. About

will still have the Content layout (implemented by this.props.children in Content):

<Router>
<Route path="/app" component={Content} >
<Route path="/about" component={About} />
...

In other words, About doesn’t need the nested URL /app/about unless you want it to

be this way. This gives you more flexibility in terms of paths and layouts.

 To navigate, you’ll implement a menu as shown in figure 13.2. The menu and the

header will be rendered from Content and reused on the About, Posts, Post, and Con-

tact Us pages. In the figure, several things are happening: the About page is rendered,

URL changedAbout button active

Text from About
component rendered

Figure 13.2 Navigating to /about renders the About text in the Content component, changes the URL, and

makes the button active.

256 CHAPTER 13 React routing

the menu button is active, the URL reflects that you’re on the About page by showing

you /#/about, and the text Node.University reflects what’s in the About component

(you’ll see it later).

13.2.1 React Router’s JSX style

As I mentioned earlier, you’ll use JSX to create the Router element and Route elements

nested within it (and each other). Each element (Router or Route) has at least two

properties, path and component, that tell the router the URL path and the React com-

ponent class to create and render. It’s possible to have additional custom properties/

attributes to pass data; you’ll use that approach to pass a posts array.

 Let’s put your knowledge to work by importing the React Router objects and using

them in ReactDOM.render() to define the routing behavior (ch13/router/jsx/app.jsx).

In addition to About, Posts, Post, and Contact Us, you’ll create a Login page.

const ReactRouter = require('react-router')
let { Router,

Route,
Link

} = ReactRouter

ReactDOM.render((
<Router history={hashHistory}>
<Route path="/" component={Content} >

<Route path="/about" component={About} />
<Route path="/posts" component={Posts} posts={posts}/>
<Route path="/posts/:id" component={Post} posts={posts}/>
<Route path="/contact" component={Contact} />

</Route>
<Route path="/login" component={Login}/>

</Router>
), document.getElementById('content'))

This last route, Login (/login, shown in figure 13.3), lives outside of the Content

route and doesn’t have the menu (which is in Content). Anything that doesn’t need

the common interface provided in Content can be left out of the Content route. This

behavior is determined by the hierarchy of the nested routes.

 The Post component renders blog post information based on the post slug (part

of the URL—think ID), which it gets from the URL (for example, /posts/http2) via the

props.params.id variable. By using a special syntax with a colon in the path, you tell

the router to parse that value and populate it into props.params.

 Router is passed to the ReactDOM.render() method. Notice that you pass history

to Router. Starting with version 2 of React Router, you must supply a history imple-

mentation. You have two choices: bundling with the React Router history or using a

standalone history implementation.

Listing 13.5 Defining Router

257React Router

13.2.2 Hash history

The hash history, as you can probably guess, relies on the hash symbol #, which is how

you navigate on the page without reloading it; for example, router/#/posts/http2.

Most SPAs use hashes because they need to reflect changes in context within the app

without causing a complete refresh (request to the server). You did this when you

implemented a router from scratch.

NOTE The proper term for a hash is fragment identifier (https://en.wikipedia
.org/wiki/Fragment_identifier).

In this example, you’ll also uses hashes, which come standalone from the history

library (http://npmjs.org/history). You’ll import the library, initialize it, and pass it to

React Router.

Login is outside
the Content route.

URL changed
to the login page

Figure 13.3 The Login page (/#/login) doesn’t use the common layout (Content) that includes a menu. There’s

only a Login element.

258 CHAPTER 13 React routing

 You need to set queryKey to false when you initialize history, because you want

to disable the pesky query string (for example, ?_k=vl8reh) that’s there by default to

support older browsers and transfer states when navigating:

const ReactRouter = require('react-router')
const History = require('history')
let hashHistory = ReactRouter.useRouterHistory(History.createHashHistory)({

queryKey: false
})
<Router history={hashHistory}/>

To use a bundled hash history, import it from React Router like this:

const { hashHistory } = require('react-router')
<Router history={hashHistory} />

You can use a different history implementation with React Router if you prefer. Old

browsers love hash history, but that means you’ll see the # hashtag. If you need URLs

without hash signs, you can do that, too. You just need to switch to the browser history

and implement some server modifications, which are simple if you use Node as your

HTTP server back end. To keep this project simple, you’ll use hash history, but we’ll go

over the browser history briefly.

13.2.3 Browser history

An alternative to hash history is the browser HTML5 pushState history. For example, a

browser history URL might be router/posts/http2 rather than router/#/posts/http2.

Browser history URLs are also called real URLs.

 Browser history uses regular, unfragmented URLs, so each request triggers a

server request. That’s why this approach requires some server-side configuration that

I won’t cover here. Typically, SPAs should use fragmented/hash URLs, especially if

you need to support older browsers, because browser history requires a more

complex implementation.

 You can use browser history in a way similar to hash history. You import the mod-

ule, plug it in, and finally configure the server to serve the same file (not the file from

your SPA’s routing).

 Browser implementations come from a standalone custom package (like history)

or from the implementation in React Router (ReactRouter.browserHistory). After

you import the browser history library, apply it to Router:

const { browserHistory } = require('react-router')
<Router history={browserHistory} />

Next, you need to modify the server to respond with the same file no matter what the

URL is. This example is just one possible implementation; it uses Node.js and Express:

259React Router

const express = require('express')
const path = require('path')
const port = process.env.PORT || 8080
const app = express()

app.use(express.static(__dirname + '/public'))

app.get('*', function (request, response){
response.sendFile(path.resolve(__dirname, 'public', 'index.html'))

})

app.listen(port)
console.log("server started on port " + port)

The reason for the required server-side behavior of the HTTP server is that once you

switch to real URLs without the hash sign, they’ll start hitting the HTTP server. The

server needs to serve the same SPA JavaScript code to every request. For example,

requests to /posts/57b0ed12fa81dea5362e5e98 and /about should resolve in

index.html, not posts/57b0ed12fa81dea5362e5e98.html or about.html (which will

probably result in 404: Not Found).

 Because hash history is the preferred way to implement URL routing when support

for older browsers is needed, and to keep this example simple without having to

implement the back-end server, we’ll use hash history in this chapter.

13.2.4 React Router development setup with Webpack

When you’re working with React Router, there are libraries you need to use and

import as well as the JSX compilation to run. Let’s look at the development setup for

React Router using Webpack, which will perform these tasks.

 The following listing shows devDependencies from package.json (ch13/router/

package.json). Most of this should be familiar to you already. New packages include

history and react-router. As always, make sure you’re using the exact versions

shown; otherwise, you can’t be sure the code will run.

{
...
"devDependencies": {
"babel-core": "6.11.4",
"babel-loader": "6.2.4",
"babel-preset-react": "6.5.0",
"history": "2.1.2",
"react": "15.2.1",
"react-dom": "15.2.1",
"react-router": "2.6.0",
"webpack": "1.12.9"

}
}

Listing 13.6 Dependencies to use Webpack v1, React Router v2.6, React v15.2, and JSX

260 CHAPTER 13 React routing

In addition to devDependencies, package.json must have a babel configuration. I also

recommend adding npm scripts:

{
...
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1",
"build": "./node_modules/.bin/webpack -w",
"i": "rm -rf ./node_modules && npm cache clean && npm install"

},
"babel": {
"presets": [

"react"
]

},
...

}

Note that because the JSX will be converted to React.createClass(), you’ll need to

import and define React in files that use JSX even when they don’t use React. To illus-

trate, in listing 13.7, it looks as though the About component (which is stateless—that

is, a function) doesn’t use React. But when this code is transpiled, it will use React in

the form of React.createElement() calls. In chapters 1 and 2, React was defined as a

global window.React; but with a modular, nonglobal approach, it isn’t. Hence, you

need to define React explicitly (ch13/router/jsx/about.jsx).

const React = require('react')

module.exports = function About() {
return <div>
Node.University
is home to top-notch Node education which brings joy to JavaScript

➥ engineers.
</div>

}

The rest of the files and the project as whole will use this structure:

/router
/css
bootstrap.css
main.css

/js
bundle.js
bundle.js.map

/jsx
about.jsx
app.jsx
contact.jsx
content.jsx

Listing 13.7 Defining React explicitly

Bundled (concatenated)
file and its source map,
for better debugging

261React Router

login.jsx
post.jsx
posts.jsx

/node_modules
index.html
package.json
posts.js
webpack.config.js

The index.html file is bare-bones because it includes only the bundled file.

<!DOCTYPE html>
<html>

<head>
<link href="css/bootstrap.css" type="text/css" rel="stylesheet"/>
<link href="css/main.css" type="text/css" rel="stylesheet"/>

</head>

<body>
<div id="content" class="container"></div>
<script src="js/bundle.js"></script>

</body>

</html>

webpack.config.js needs to have at least an entry-point app.jsx, babel-loader, and

source maps (ch13/router/webpack.config.js).

module.exports = {
entry: './jsx/app.jsx',
output: {
path: __dirname + '/js/',
filename: 'bundle.js'

},
devtool: '#sourcemap',
stats: {
colors: true,
reasons: true

},
module: {
loaders: [

{
test: /\.jsx?$/,
exclude: /(node_modules)/,
loader: 'babel-loader'

}
]

}
}

Listing 13.8 index.html

Listing 13.9 Configuring Webpack

Data for blog posts, such
as URLs, titles, and text

Sets the devtool value to see the
proper mapping to your JSX source
code, not the transpiled one

262 CHAPTER 13 React routing

Next, let’s implement the Content layout component.

13.2.5 Creating a layout component

The Content component, which is defined as a parent Route, will serve as a layout for the

About, Posts, Post, and Contact components. Figure 13.4 shows how it’s implemented.

First, you’ll import React and Link from React Router. The latter is a special compo-

nent to render navigation links. Link is a special wrapper for <a>; it has some magic

attributes that the normal anchor tag doesn’t, such as activeClassName="active",

which adds the active class when this route is active.

 The Content component’s structure looks something like this, with the omission of

a few pieces (the complete code is shown later):

const React = require('react')
const {Link} = require('react-router')

class Content extends React.Component {
render() {
return (

<div>

Figure 13.4 The Content component as the Home page (no children)

263React Router

...
</div>

)
}

}
...
module.exports = Content

In render(), you use the amazing Twitter Bootstrap UI library (http://getbootstrap

.com) to declare the menu with the proper classes. The menu can be created using

ready-made CSS classes, such as these:

<div className="navbar navbar-default">
<ul className="nav nav-pills navbar-nav ">
<li ...>

<Link to="/about" activeClassName="active">
About

</Link>

<li ...>

<Link to="/posts" activeClassName="active">
Blog

</Link>

...

</div>

You’ll access the isActive() method, which returns true or false. This way, an active

menu link will be visually different from other links:

<li className={(this.context.router.isActive('/about'))? 'active': ''}>
<Link to="/about" activeClassName="active">
About

</Link>

Notice the activeClassName attribute of Link. When you set this attribute to a value,

Link will apply the class to an active element (the selected link). But you need to set

the style on , not just on Link. That’s why you also access router.isActive().

 After you’re finished with the Content class definition (full implementation shown

shortly), you define a static field/attribute contextTypes that enables the use of

this.context.router. If you’re using ES2017+/ES8+,2 you may have support for static

fields, but that’s not the case in ES2015/ES6 or ES2016/ES7. They don’t have this fea-

ture. The ES2017/ES8 standard isn’t final yet, but as of this writing it doesn’t have this

2 Learn more about ES2016/ES7 and ES2017/ES8 features at https://node.university/blog/498412/es7-es8
and https://node.university/p/es7-es8.

264 CHAPTER 13 React routing

feature either. Be sure to check the current list of finished proposals/features,3 or

consider using ES Next (collection of stage 0 proposals).

 This static attribute will be used by React Router such that if it’s required, React

Router populates this.context (from which you can access router.isActive() and

other methods):

Content.contextTypes = {
router: React.PropTypes.object.isRequired

}

Having contextType and router set to required gives you access to this.context

.router.isActive('/about'), which in turn will tell you when this particular route is

active.

 Phew! Here’s the full implementation of the Content layout.

const React = require('react')
const {Link} = require('react-router')

class Content extends React.Component {
render() {
return (

<div>
<h1>Node.University</h1>
<div className="navbar navbar-default">

<ul className="nav nav-pills navbar-nav ">
<li className={(this.context.router.isActive('/about'))?

➥ 'active': ''}>
<Link to="/about" activeClassName="active">
About

</Link>

<li className={(this.context.router.isActive('/posts'))?

➥ 'active': ''}>
<Link to="/posts" activeClassName="active">
Blog

</Link>

<li className={(this.context.router.isActive('/contact'))?

➥ 'active': ''}>
<Link to="/contact" activeClassName="active">
Contact Us

</Link>

<Link to="/login" activeClassName="active">

3 For the current list of stage 0–3 and finished proposals, see the TC39 documents on GitHub: https://
github.com/tc39/proposals/blob/master/README.md and https://github.com/tc39/proposals/blob/
master/finished-proposals.md.

Listing 13.10 Complete Content component

Accesses Router and
its method to check

the active route

Uses Link to create
a navigation link

265React Router features

Login
</Link>

</div>
{this.props.children}

</div>
)

}
}
Content.contextTypes = {

router: React.PropTypes.object.isRequired
}
module.exports = Content

The children statement enables you to reuse the menu on every subroute (route

nested in the / route), such as /posts, /post, /about, and /contact:

{this.props.children}

Let’s look at another way to access a router in an individual route, other than using

contextTypes.

13.3 React Router features

To learn more about React Router’s features and patterns, let’s look at another way to

access a router from child components and how to navigate programmatically within

those components. And, of course, the chapter wouldn’t be complete if I didn’t cover

how to parse URL parameters and pass data.

13.3.1 Accessing router with the withRouter higher-order component

Using router allows you to navigate programmatically and access the current route,

among other things. It’s good to include access to router in your components.

 You’ve seen how to access router from this.context.router by setting the static

class attribute contextTypes:

Content.contextTypes = {
router: React.PropTypes.object.isRequired

}

In a way, you’re using the validation mechanism to define the API; that is, the compo-

nent must have the router. The Content component used this approach.

 But context depends on React’s context, which is an experimental approach; its

use is discouraged by the React team. Fortunately, there’s another way (some might

argue it’s simpler and better; see http://mng.bz/Xhb9): withRouter.

 withRouter is a higher-order component (HOC; more about these in chapter 8)

that takes a component as an argument, injects router, and returns another HOC. For

example, you can inject router into Contact like this:

Renders child routes
(defined in app.jsx)

Defines that this component
needs a router object in the
context

266 CHAPTER 13 React routing

const {withRouter} = require('react-router')
...
<Router ...>

...
<Route path="/contact" component={withRouter(Contact)} />

</Router>

When you look at the Contact component implementation (a function), the router

object is accessible from the properties (argument object to the function):

const React = require('react')

module.exports = function Contact(props) {
// props.router - GOOD!
return <div>
...

</div>
}

The advantage of withRouter is that it works with regular, stateful React classes as well

as with stateless functions.

NOTE Even though there’s no direct (visible) use of React, you must require
React because this code will be converted to code with React.create-
Element() statements that depend on the React object. For more informa-
tion, see chapter 3.

13.3.2 Navigating programmatically

A popular use of router is to navigate programmatically: changing the URL (location)

from within your code based on logic, not user actions. To demonstrate, suppose you

have an app in which the user types a message on a contact form and then submits the

form. Based on the server response, the app navigates to an Error page, a Thank-you

page, or an About page.

 Once you have router, you can navigate programmatically if you need to by calling

router.push(URL), where URL must be a defined route path. For instance, you can

navigate to About from Contact after 1 second.

const React = require('react')

module.exports = function Contact(props) {
setTimeout(()=>{props.router.push('about')}, 1000)
return <div>
<h3>Contact Us</h3>
<input type="text" placeholder="your email" className="form-control"

➥ ></input>
<textarea type="text" placeholder="your message" className="form-control">

➥ </textarea>
<button className="btn btn-primary">send</button>

</div>
}

Listing 13.11 Calling router.push() to navigate

Navigates away
after 1 second

267React Router features

Navigating programmatically is an important feature because it lets you change the

state of the application. Let’s see how you access URL parameters such as a post ID.

13.3.3 URL parameters and other route data

As you’ve seen, having contextTypes and router will give you the this.context

.router object. It’s an instance of <Router/> defined in app.jsx, and it can be used to

navigate, get the active path, and so on. On the other hand, there’s other interesting

information in this.props, and you don’t need a static attribute to access it:

 history (deprecated in v2.x; you can use context.router)

 location
 params
 route
 routeParams
 routes

The this.props.location and this.props.params objects contain data about the

current route, such as path name, URL parameters (names defined with a colon [:]),

and so on.

 Let’s use params.id in post.jsx for the Post component in Array.find() to find the

post corresponding to a URL path such as router/#/posts/http2 (ch13/router/

jsx/post.jsx).

const React = require('react')

module.exports = function Product(props) {
let post = props.route.posts.find(element=>element.slug ==

➥ props.params.id)
return (
<div>

<h3>{post.title}</h3>
<p>{post.text}</p>
<p>Continue reading...</p>

</div>
)

}

When you navigate to the Posts page (see figure 13.5), there’s a list of posts. As a

reminder, the route definition is as follows:

<Route path="/posts" component={Posts} posts={posts}/>

Clicking a post navigates to #/posts/ID. That page reuses the layout of the Content

component.

Listing 13.12 Rendering post data

Finds a post by
its slug property

268 CHAPTER 13 React routing

Now, let’s move on and work with data.

13.3.4 Passing properties in React Router

You often need to pass data to nested routes, and it’s easy to do. In the example, Posts

needs to get data about posts. In listing 13.13, Posts accesses a property passed to you

in <Route/> in app.jsx: posts, from the posts.js file. It’s possible to pass any data to a

route as an attribute; for example, <Route path="/posts" component={Posts}

posts={posts}/>. You can then access the data in props.route; for example,

props.route.posts is a list of posts.

const {Link} = require('react-router')
const React = require('react')

module.exports = function Posts(props) {
return <div>Posts

{props.route.posts.map((post, index)=>

<li key={post.slug}><Link

Listing 13.13 Posts implementation with data from props.route

Menu

Posts

Figure 13.5 The Posts page renders the Posts component in the Content (menu) component because it’s

defined as a child route of Content in app.jsx.

Accesses an attribute defined
in the route declaration

269Routing with Backbone

➥ to={`/posts/${post.slug}`} >{post.title}</Link>
)}

</div>
}

Of course, the value of this data can be a function. That way, you can pass event han-

dlers to stateless components and implement them only in the main component, such

as app.jsx.

 You’re finished with all the major parts and ready to launch this project! You can do so

by running an npm script (npm run build) or using ./node_modules/.bin/webpack -w

directly. Wait for the build to finish, and you’ll see something like this:

> router@1.0.0 build /Users/azat/Documents/Code/react-quickly/ch13/router
> webpack -w

Hash: 07dc6eca0c3210dec8aa
Version: webpack 1.12.9
Time: 2596ms

Asset Size Chunks Chunk Names
bundle.js 976 kB 0 [emitted] main

bundle.js.map 1.14 MB 0 [emitted] main
+ 264 hidden modules

In a new window, open your favorite static server (I use node-static, but you can create

your own using Express), and navigate to the location in your browser. Try going to /

and /#/about; the exact URL will depend on whether you’re running your static

server from the same folder or a parent folder.

NOTE The full source code for this example isn’t included here, for space
reasons. If you want to play with it or use it as boilerplate, or if you found the
preceding snippets confusing when taken out of context, you can find the
complete code at www.manning.com/books/react-quickly or https://github
.com/azat-co/react-quickly/tree/master/ch13/router.

13.4 Routing with Backbone

When you need routing for a single-page application, it’s straightforward to use React

with other routing or MVC-like libraries. For example, Backbone is one of the most

popular front-end frameworks that has front-end URL routing built in. Let’s look at

how you can easily use the Backbone router to render React components by doing

the following:

 Defining a router class with the routes object as a mapping from URL frag-

ments to functions

 Rendering React elements in the methods/functions of the Backbone Router

class

 Instantiating and starting the Backbone the Router object

270 CHAPTER 13 React routing

This is the project structure:

/backbone-router
/css
bootstrap.css
main.css

/js
bundle.js
bundle.map.js

/jsx
about.jsx
app.jsx
contact.jsx
content.jsx
login.jsx
post.jsx
posts.jsx

/node_modules
...

index.html
package.json
posts.js
webpack.config.js

package.json includes Backbone v1.3.3 in addition to the usual suspects, such as Web-

pack v2.4.1, React v15.5.4, and Babel v6.11:

{
"name": "backbone-router",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1",
"build": "./node_modules/.bin/webpack -w",
"i": "rm -rf ./node_modules && npm cache clean && npm install"

},
"author": "Azat Mardan",
"license": "MIT",
"babel": {
"presets": [

"react"
]

},
"devDependencies": {
"babel-core": "6.11.4",
"babel-loader": "6.4.1",
"babel-preset-react": "6.5.0",
"backbone": "1.3.3",
"jquery": "3.1.0",
"react": "15.5.4",
"react-dom": "15.5.4",
"webpack": "2.4.1"

}
}

271Routing with Backbone

The main logic’s source is in app.jsx, where you perform all three of the aforemen-

tioned tasks:

const Backbone = require ('backbone')
// Include other libraries
const Router = Backbone.Router.extend({

routes: {
'' : 'index',
'about' : 'about',
'posts' : 'posts',
'posts/:id' : 'post',
'contact' : 'contact',
'login': 'login'

},
...

})

Once the routes object is defined, you can define the methods. The values in routes

must be used as method names:

// Include libraries
const Router = Backbone.Router.extend({

routes: {
'' : 'index',
'about' : 'about',
'posts' : 'posts',
'posts/:id' : 'post',
'contact' : 'contact',
'login': 'login'

},
index: function() {
...

},
about: function() {
...

}
...

})

Each URL fragment maps to a function. For example, #/about will trigger about.

Thus, you can define these functions and render your React components in them.

The data will be passed as a property (router or posts):

const {render} = require ('react-dom')
// ...
const Router = Backbone.Router.extend({

routes: {
...

},
index: function() {
render(<Content router={router}/>, content)

},

Uses destructuring to
import and define render()
from ReactDOM.render()

272 CHAPTER 13 React routing

about: function() {
render(<Content router={router}>

<About/>
</Content>, content)

},
posts: function() {
render(<Content>

<Posts posts={posts}/>
</Content>, content)

},
post: function(id) {
render(<Content>

<Post id={id} posts={posts}/>
</Content>, content)

},
contact: function() {
render(<Content>

<Contact />
</Content>, content)

},
login: function() {
render(<Login />, content)

}
})

let router = new Router()

Backbone.history.start()

The content variable is a DOM node (which you declare before the router):

let content = document.getElementById('content')

Compared to the React Router example, nested components such as Post get their

data not in props.params or props.route.posts, but in props.id and props.posts.

In my opinion, that means less magic—which is always good. On the other hand, you

don’t get to use declarative JSX syntax and must use a more imperative style.

 The complete code for this project is available at www.manning.com/books/react-

quickly and https://github.com/azat-co/react-quickly/tree/master/ch13/backbone-

router. This example will give you a head start if you have a Backbone system or are

planning to use Backbone. And even if you’re not planning to use Backbone, it’s

shown you yet again that React is amazing at working with other libraries.

13.5 Quiz

1 You must provide a history implementation for React Router v2.x (the one cov-

ered in this chapter) because by default it doesn’t use one. True or false?

2 What history implementation is better supported by older browsers: hash his-

tory or browser HTML5 pushState history?

Creates Content, with About
inside it. You can pass the
router as a property.

Passes necessary data to Post,
such as a URL parameter (id),
and posts data

Renders Login
without Content

Instantiates Router, and
starts browser history

273Quiz answers

3 What do you need to implement to have access to the router object in a route

component when using React Router v2.x ?

4 How would you access URL parameters in a route component (stateless or state-

ful) when using React Router v2.x?

5 React Router requires the use of Babel and Webpack. True or false?

13.6 Summary

 You can implement routing with React in a naive way by listening to hash-

change.

 React Router provides the JSX syntax for defining a routing hierarchy:

<Router><Route/></Router>.

 Nested routes don’t have to have nested URLs relative to their parent routes;

path and nestedness are independent.

 You can use hash history without tokens by setting queryKey to false.

 You must include React (require('react')) when using JSX even if there’s no

visible use of React, because JSX converts to React.createElement(), which

needs React.

13.7 Quiz answers

1True. Version 1.x of React Router loaded a history implementation by default; but

in version 2.x, you must provide a library, either from a standalone package or one

bundled with the router library.

2Hash history is better supported by older browsers.

3The static class attribute contextTypes, with router as a required object.

4From props.params or props.routeParams.

5False. You can use it plain and/or with other build tools such as Gulp and Browserify.

274

Working
 with data using Redux

So far, you’ve been using React to create user interfaces. This is the most common

use case for React. But most UIs need to work with data. This data comes from

either a server (back end) or another browser component.

 When it comes to working with data, React offers many options:

 Integrating with MVC-like frameworks—This option is ideal if you’re already

using or are planning to use an MVC-like framework for a single-page appli-

cation: for example, using Backbone and Backbone models.

 Writing your own data method or a library—This option is well suited for small UI

components: for example, fetching a list of accounts for a List of Accounts grid.

 Using the React stack (a.k.a. React and friends)—This option offers the most

compatibility (your code will integrate with less friction) and the most adher-

ence to the React philosophy.

This chapter covers

 Understanding unidirectional data flow in React

 Understanding the Flux data architecture

 Working with the Redux data library

Watch this chapter’s introduction video by

scanning this QR code with your phone or going

to http://reactquickly.co/videos/ch14.

275React support for unidirectional data flow

This chapter covers one of the most popular options for the third approach: Redux.

Let’s start by outlining how data flows in React components.

NOTE There’s the Flux architecture, and then there’s the flux library from
Facebook. I’ll be showing you Redux rather than the flux library, because
Redux is more actively used in projects. flux serves as more of a proof of con-
cept for the Flux architecture that Redux adheres to and implements. Think
of Redux and flux (the library) as the two implementations of the Flux archi-
tecture. (I’ll cover the Flux architecture but not the library.)

NOTE The source code for the examples in this chapter is at www.manning
.com/books/react-quickly and https://github.com/azat-co/react-quickly/
tree/master/ch14 (in the ch14 folder of the GitHub repository https://
github.com/azat-co/react-quickly). You can also find some demos at http://
reactquickly.co/demos.

14.1 React support for unidirectional data flow

React is a view layer that’s designed to work with unidirectional data flow (see figure 14.1).

A unidirectional data pattern (a.k.a. one-way binding) exists when there are no mutable

(or two-way) references between concerns. Concerns are parts with different function-

ality. For example, a view and a model can’t have two-way references. I’ll talk about

bidirectional flow again in a few moments.

 To illustrate, if you have an account model and an account view, then data can flow

only from the account model to the account view and not vice versa. In other words,

changes in the model will cause changes in the view (see figure 14.2). The key to

understanding this is that views can’t modify models directly.

 Unidirectional data flow ensures that for any given input into your components,

you’ll get the same predictable result: a render() expression. This React pattern is in

ViewModel

One-way binding

Amount: $200

To: #324

From: #9944

Transfer

{amount:

200.00,

to: 324,

from: 9944}

ModelView

Two-way binding

Amount: $100

To: ________

From: ______

$200->$100

Transfer

{amount:

100.00,

to: 324,

from: 9944}

Figure 14.1 Unidirectional vs. bidirectional data flow

276 CHAPTER 14 Working with data using Redux

stark contrast to the bidirectional, two-way binding pattern of Angular.js and some

other frameworks.

 For example, in bidirectional data flow, changes in models cause changes in views

and changes in views (user input) cause changes in models. For this reason, with

bidirectional data flow, the state of a view is less predictable, making it harder to

understand, debug, and maintain (see figure 14.3). The key to remember is that views

can modify models directly. This is in stark contrast to unidirectional flow.

 Interestingly enough, bidirectional data flow (two-way binding) is considered a

benefit by some Angular developers. Without getting into a debate, it’s true that with

bidirectional flow, you can write less code.

View

View

View

Model

ModelController Action

Model

Figure 14.2 A simplified view of

unidirectional data flow, in which

views can’t modify models directly

Model

ModelControllerAction

Model View

View

View

Figure 14.3 A simplified view of the bidirectional data flow typical for an MVC-like architecture

277React support for unidirectional data flow

For example, let’s say you have an input field like the one shown in figure 14.1. All you

need to do is define a variable in the template, and the value will be updated in the

model when the user types in the field. At the same time, the value on the web page

will be updated if there’s a change in the model (as a result of an XHR GET request, for

example). Therefore, changes are possible in two directions: from view to model and

from model to view. This is great for prototyping, but not so great for complex UIs

when it comes to performance, debugging, development scaling, and so on. This may

sound controversial—please bear with me.

 I’ve built a lot of complex UI applications with MVC and MVW frameworks that

have bidirectional flows, and they’ll do the job. In a nutshell, problems arise because

various views can manipulate various models, and vice versa. That’s fine when you

have one or two models and views in isolation; but the bigger the application, the

more models and views are updating each other. It becomes harder and harder to fig-

ure out why one model or view is in a given state, because you can’t easily determine

which models/views updated it and in which order. Traceability becomes a huge issue,

as does finding bugs. That’s why the bidirectional data flow in MVC frameworks (such

as Angular) isn’t favored by many developers: they find this antipattern difficult to

debug and scale.

 On the other hand, with unidirectional flow, the model updates the view, and

that’s that. As an added bonus, unidirectional data flow allows for server-side render-

ing, because views are an immutable function of state (that is, isomorphic/universal

JavaScript).

 For now, keep in mind that unidirectional data flow is a major selling point of

React:

 Code readability and reasoning due to one source of truth (state/model view).

 Debuggable code with time travel;1 for example, it’s trivial to send a dump with

history to the server on exceptions and bugs.

 Server-side rendering without a headless browser: isomorphic,2 or universal,3

JavaScript, as some call it.

Here’s my personal experience with Angular, in case you’re curious. I worked only a

little bit with Angular 1 because I thought it was lacking, but then I took a course on

Angular 2—and then I realized how wrong I was. I corrected my mistake. Now I com-

pletely avoid any Angular code.

1 Dan Abramov, “Live React: Hot Reloading with Time Travel” (presentation, ReactEurope 2015),
http://mng.bz/uSxq.

2 Spike Brehm, “Isomorphic JavaScript: The Future of WebAir Apps,” Airbnb Engineering & Data Science, Novem-
ber 11, 2013, http://mng.bz/i34M.

3 Michael Jackson, “Universal JavaScript,” June 8, 2015, http://mng.bz/7GXE.

278 CHAPTER 14 Working with data using Redux

14.2 Understanding the Flux data architecture

Flux (https://facebook.github.io/flux) is an architecture pattern for data flow devel-

oped by Facebook to be used in React apps. The gist of Flux is unidirectional data flow

and elimination of the complexity of MVC-like patterns.

 Let’s consider a typical MVC-like pattern, shown in figure 14.4. Actions trigger

events in the controller, which handles models. Then, according to the models, the

app renders the views, and the madness begins. Each view updates the models—not

just its own model, but the other models too—and the models update the views

(bidirectional data flow). It’s easy to get lost in this architecture. The architecture is

difficult to understand and debug.

Conversely, Flux suggests using a unidirectional data flow, as shown in figure 14.5. In

this case, you have actions from views going through a dispatcher, which in turn calls

the data store. (Flux is a replacement for MVC. This isn’t just new terminology.) The

store is responsible for the data and the representation in the views. Views don’t mod-

ify the data but have actions that go through the dispatcher again.

Model

Model

Model

Model

Action ControllerAction

Model

Model

View

View

View

View

View

View

View

Model

Figure 14.4 An MVC-like architecture introduces complexity by allowing views to trigger

changes on any model, and vice versa.

DispatcherAction

Action

ViewStore

Figure 14.5 The Flux architecture simplifies the data flow by having it go

in one direction (from store to view).

279Using the Redux data library

The unidirectional data flow enables better testing and debugging. A more detailed

diagram of the Flux architecture is shown in figure 14.6.

 Historically, Flux was an architecture. Only later did the Facebook team release the

flux module (www.npmjs.com/package/flux, https://github.com/facebook/flux)

that can be used with React to implement Flux. The flux module is more or less a proof

of concept for the Flux architecture, and React developers rarely use it.

TIP There’s no reason for me to duplicate the great minds who have already
spoken about Flux. I suggest that you watch the video “Hacker Way: Rethink-
ing Web App Development at Facebook,” from the official Flux website:
http://mng.bz/wygf.

Personally, I find Flux confusing—and I’m not alone. There are many implementa-

tions of Flux, including Redux, Reflux, and other libraries. Early Manning Access Pro-

gram readers of this book know that Reflux was included in the first version of the

book, but I omitted it from this version. My anecdotal evidence, David Waller’s

“React.js architecture - Flux vs. Reflux” at http://mng.bz/5GHx, and the hard data

from numbers of npm downloads all indicate that Redux is more popular than Flux

or Reflux. In this book, I use Redux, which some argue is a better alternative to Flux.

14.3 Using the Redux data library

Redux (redux, www.npmjs.com/package/redux) is one of the most popular imple-

mentations of the Flux architecture. Redux has these qualities:

 Rich ecosystem—See, for example, Awesome Redux (https://github.com/

xgrommx/awesome-redux).

 Simplicity—No dispatcher or store registration is required, and the minimal ver-

sion has only 99 lines of code (http://mng.bz/00Ap).

Web

API

Web API

utilities

Action

creators

React

views

Dispatcher

Actions

User

interactions

Change events

and store queries

Callbacks

Store

Figure 14.6 The Flux architecture in a nutshell: actions trigger the dispatcher, which triggers

the store, which renders views.

280 CHAPTER 14 Working with data using Redux

 Good developer experience (DX)—For example, you can do hot reloading with time

travel (see the video “Live React: Hot Reloading with Time Travel,” http://

mng.bz/uSxq).

 Reducer composition—For example, the undo/redo higher-order component

requires minimal code (https://github.com/omnidan/redux-undo).

 Support for server-side rendering.

I won’t take time to go over all the details of why Redux is better than Flux. If you’re

interested, you can read some thoughts by the author of Redux: “Why Use Redux over

Facebook Flux?” at http://mng.bz/z9ok.

 Redux is a standalone library that implements a state container. It’s like a huge

variable that contains all the data your application works with, stores, and changes in

the runtime. You can use Redux alone or on the server. As already mentioned, Redux

is also popular in combination with React; this combination is implemented in

another library, react-redux (https://github.com/reactjs/react-redux).

 A few moving parts are involved when you use Redux in your React apps:

 A store that stores all the data and provides methods to manipulate this data.

The store is created with the createStore() function.

 A Provider component that makes it possible for any components to take data

from the store.

 A connect() function that wraps any component and lets you map certain parts

of your application state from the store to the component’s properties.

Look back at the Flux architecture diagram in figure 14.5: you can see why there’s a

store. The only way to mutate the internal state is to dispatch an action, and actions

are in the store.

 Every change in the store is performed via actions. Each action tells your applica-

tion what happened and what part of the store should be changed. Actions can also

provide data; you’ll find this useful because, well, every app works with data that

changes.

 The way the data in the store changes is specified by reducers that are pure func-

tions. They have a (state, action) state signature. In other words, by applying an

action to the current state, you get a new state. This allows for predictability and the

ability to rewind actions (via undo and debugging) to previous states.

 Here’s the reducer file for a Todo list app in which SET_VISIBILITY_FILTER and

ADD_TODO are actions:4

function todoApp(state = initialState, action) {
switch (action.type) {

case 'SET_VISIBILITY_FILTER':
return Object.assign({}, state, {

visibilityFilter: action.filter
})

4 Object.assign(), http://mng.bz/O6pl.

Defines
an action

Applies a reducer to
create a new state by
copying4 the current
state and the
visibilityFilter values

281Using the Redux data library

case 'ADD_TODO':
return Object.assign({}, state, {

todos: [
...state.todos,
{

text: action.text,
completed: false

}
]

})
default:
return state

}
}

You may have one or many reducers (or none) in your Redux application. Every time

you call an action, every reducer is called. Reducers are responsible for changing the

data in the store; this is why you need to be careful about what they do during certain

types of actions.

 Typically, a reducer is a function with state and an action as arguments. For exam-

ple, an action can be “to fetch a movie” (FETCH_MOVIE), which you get by using a

reducer. The action code describes how an action transforms the state into the next

state (adds a movie to the state). This reducer function contains a huge switch/case

statement to process actions. But there’s a handy library that makes reducers more

functional and—surprise!—easier to read. The library is called redux-actions, and

you’ll see how to use it instead of switch/case.

TIP Redux creator Dan Abramov (https://github.com/gaearon) suggests
the following before-bed reading about Redux: “Why Use Redux Over Face-
book Flux?” (http://mng.bz/9syg) and “What Could Be the Downsides of
Using Redux Instead of Flux” (http://mng.bz/Ux9l).

14.3.1 Redux Netflix clone

We all like good old Hollywood movies, right? Let’s make an app that shows a list of

classic movies: that is, a Netflix clone (but only the home page—no streaming or any-

thing like that). The app will display a grid of movies (see figure 14.7); and when you

click a movie’s image, you’ll see a detailed view (figure 14.8).

 The goal of this tutorial is to learn how to use Redux in a real-life scenario to feed

data to React components. This data will come from a JSON file to keep things simple.

Each individual movie’s detail view will be facilitated with React Router, which you

learned about in the previous chapter.

 The project will have three components: App, Movies, and Movie. Each component

will have a CSS file and live in its own folder for better code organization (that’s the

Defines the
ADD_TODO

action

Applies a reducer to
create a new state by
copying the current state
and the new TODO values
“text” and “completed”
as the last item of the
todos array

Defines a default fallback
that, in this case, returns
the current state

282 CHAPTER 14 Working with data using Redux

Figure 14.7 The Netflix clone will show a grid of movies on the home page.

Figure 14.8 Details of a movie are shown when you click its poster.

283Using the Redux data library

best practice to encapsulate React components together with styles). The project

structure is as follows:

/redux-netfix
/build

index.js
styles.css

/node_modules
...

/src
/components
/app

app.css
app.js

/movie
movie.css
movie.js

/movies
movies.css
movies.js

/modules
index.js
movies.js

index.js
movies.json
routes.js

index.html
package.json
webpack.config.json

Now that the project’s folder structure is ready, let’s look at the dependencies and

build configuration.

14.3.2 Dependencies and configs

You need to set up a number of dependencies for this project. You’ll use Webpack

(https://github.com/webpack/webpack) to bundle all the files for live use and an

additional plug-in called extract-text-webpack-plugin to bundle styles from multiple

<style> includes (inline) into one style.css. Webpack loaders are also used in the project:

 json-loader
 style-loader
 css-loader
 babel-loader

Other project development dependencies modules include the following:

 Babel (https://github.com/babel/babel) and its presets transpile ECMAScript 6

into browser-friendly, old-school JavaScript (a.k.a. ECMAScript 5): babel-

polyfill emulates a full ES2015 environment, babel-preset-es2015 is for

ES6/ES2015, babel-preset-stage-0 provides cutting-edge new ES7+ features,

and babel-preset-react is for JSX.

Build folder where Webpack
will write bundles

App folder for the
layout componentMovie folder

for individual
movie view

components

Movies folder for
the grid of movies

File that will
combine

reducers and
expose them Redux reducers to fetch movies

and a single movie’s data

Entry point of the
project that defines

a Redux provider
with reducers

Movie data

React Router routes

284 CHAPTER 14 Working with data using Redux

 react-router (https://github.com/reactjs/react-router) shows a hierarchy of

components based on their current location. It also helps arrange components

into a hierarchy based on URL location.

 redux-actions (https://github.com/acdlite/redux-actions) organizes the

reducers.

 ESLint (http://eslint.org) and its plug-ins maintain proper JavaScript/JSX style.

 concurrently (www.npmjs.com/package/concurrently) is a Node tool to make

processes such as Webpack builds run concurrently (at the same time).

The package.json file lists all dependencies, Babel configs, and npm scripts and should

contain at least the data shown in the following listing (ch14/redux-netflix/

package.json). As always, you can install modules manually with npm i NAME, type

package.json, and run npm i, or copy package.json and run npm i. Make sure you use

the exact versions of the libraries from package.json; otherwise, your code might break.

{
"name": "redux-netflix",
"version": "0.0.1",
"description": "A sample project in React and Redux that copies Netflix's

➥ features and workflow",
"main": "./build/index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1",
"start": "concurrently \"webpack --watch --config webpack.config.js\"

➥ \"webpack-dev-server\""
},
"repository": {
"type": "git",
"url": "git+https://github.com/azat-co/react-quickly.git"

},
"author": "Azat Mardan (http://azat.co)",
"license": "MIT",
"bugs": {
"url": "https://github.com/azat-co/react-quickly/issues"

},
"homepage": "https://github.com/azat-co/react-quickly#readme",
"devDependencies": {
"babel-core": "6.11.4",
"babel-eslint": "6.1.2",
"babel-loader": "6.2.4",
"babel-polyfill": "6.9.1",
"babel-preset-es2015": "6.9.0",
"babel-preset-react": "6.11.1",
"babel-preset-stage-0": "6.5.0",
"concurrently": "2.2.0",
"css-loader": "0.23.1",
"eslint": "3.1.1",
"eslint-plugin-babel": "3.3.0",

Listing 14.1 Dependences for the Netflix clone

Defines the script to build and run Webpack
Dev Server using the concurrently tool

Installs various Babel plug-
ins, loaders, and modules

Installs concurrently to run
npm scripts more quickly

285Using the Redux data library

"eslint-plugin-react": "5.2.2",
"extract-text-webpack-plugin": "1.0.1",
"json-loader": "0.5.4",
"style-loader": "0.13.1",
"webpack": "1.13.1",
"webpack-dev-server": "1.14.1"
"react": "15.2.1",
"react-dom": "15.2.1",
"react-redux": "4.4.5",
"react-router": "2.6.0",
"redux": "3.5.2",
"redux-actions": "0.10.1"

}
}

Because you use Webpack to bundle the dependencies, all of the necessary packages

are in bundle.js. For this reason, you put all the dependencies in devDependencies.

(I’m picky about what’s deployed—I don’t want any unused modules in my deploy-

ment environment just sitting idly and causing security vulnerabilities.) npm ignores

devDependencies when the --production flag is used, as in npm i --production.

 Next, let’s define the build process by creating webpack.config.js (ch14/redux-netflix/

webpack.config.js).

const path = require('path')
const ExtractTextPlugin = require('extract-text-webpack-plugin')

module.exports = {
entry: {

index: [
'babel-polyfill',
'./src/index.js'

]
},
output: {

path: path.join(__dirname, 'build'),
filename: '[name].js'

},
target: 'web',
module: {

loaders: [{
loader: 'babel-loader',
include: [path.resolve(__dirname, 'src')],
exclude: /node_modules/,
test: /\.js$/,
query: {

presets: ['react', 'es2015', 'stage-0']
}

}, {
loader: 'json-loader',
test: /\.json$/

}, {

Listing 14.2 Netflix clone Webpack configuration file

Installs extract-text-webpack-
plugin to combine inline
styles into one bundle

Installs react-redux
to work with data

Installs redux-actions to better
organize Redux reducers

Applies polyfill to fully
emulate an ES2015
environment

Specifies an
entry point

(doesn’t always
have to be *.jsx)

Specifies the output folder
using path.join() to make it
more robust for cross-
platform usage (such as on
Windows)

Applies
loaders as

an array

Specifies Babel
presets (that is, what
to do with the code)

Applies a JSON
loader to mock a

database of
movies from

JSON files

286 CHAPTER 14 Working with data using Redux

loader: ExtractTextPlugin.extract('style',
'css?modules&localIdentName=[local]__[hash:base64:5]'),

test: /\.css$/,
exclude: /node_modules/

}]
},
resolve: {

modulesDirectories: [
'./node_modules',
'./src'

]
},
plugins: [

new ExtractTextPlugin('styles.css')
]

}

Enough with configurations. In the next section, you’ll start working with Redux.

14.3.3 Enabling Redux

To make Redux work in your React application, the hierarchy of components needs

the Provider component at the top level. This component comes from the react-

redux package and injects data from the store into components. That’s right: using

Provider as the top-level component means all children will have the store. Neat.

 To make Provider work, you need to provide the store to its store property. The

Store is an object that represents the application state. Redux (react-redux) comes

with a createStore() function that takes reducer(s) from ch14/redux-netflix/

scr/modules/index.js and returns the Store object.

 To render the Provider component and its entire subtree of components, you use

react-dom’s render(). It takes the first argument (<Provider>) and mounts it into

the element you pass as the second argument (document.getElementById('app')).

 Combining all of this, the entry point of your application should now look like the

following listing (ch14/redux-netflix/index.js). You define Provider by passing a

Store instance (with reducers) in a JSX format.

const React = require('react')
const { render } = require('react-dom')
const { Provider } = require('react-redux')
const { createStore } = require('react-redux')
const reducers = require('./modules')
const routes = require('./routes')

module.exports = render((
<Provider store={createStore(reducers)}>
{routes}

</Provider>
), document.getElementById('app'))

Listing 14.3 Main app entry point

Applies a loader from a plug-in to
extract styles and combine them

into one file (instead of many files)

Provides a plug-in
for text extraction

287Using the Redux data library

For the entire application to be able to use Redux features, you need to implement

some code in child components, such as connecting the store. The connect() func-

tion from the same react-redux package accepts a few arguments. It returns a func-

tion that then wraps your component so it can receive certain parts of the store into its

properties. You’ll see it in a bit.

 You’re finished with index.js. The Provider component takes care of delivering

data from the store to all the connected components, so there’s no need to pass prop-

erties directly. But a few parts are missing, such as routes, reducers, and actions. Let’s

look at them one by one.

14.3.4 Routes

With react-router, you can declare a hierarchy of components per browser location.

I covered React Router in chapter 13, so it should be familiar; you used it for client-

side routing. React routing is not strictly connected with server-side routes, but some-

times you may want to use it for that, especially in conjunction with techniques dis-

cussed in chapter 16.

 The gist of React Router is that every route can be declared by a couple of nested

Route components, each of which takes two properties:

 path—URL path or location that can contain URL parameters: for example,

/movies:/id for localhost:8080/movies/1021. Using / can define a path

regardless of the parent route path: for example, /:id for localhost:8080/1012.

 component—Reference to the component that will be rendered when a user

goes to a path/location. All the parent components up to Provider will be ren-

dered as well. For example, going to localhost:8080/movies/1021 in listing 14.4

will render Movie, Movies, and App.

You need to show a collection of movie covers at both the root and /movies locations. In

addition, you need to show the details of a given movie at the /movies/:id location. The

route configuration uses IndexRoute, as shown next (ch14/redux-netflix/src/routes.js).

const React = require('react')
const {

Router,
Route,
IndexRoute,
browserHistory

} = require('react-router')
const App = require('components/app/app.js')
const Movies = require('components/movies/movies.js')
const Movie = require('components/movie/movie.js')

module.exports = (
<Router history={browserHistory}>

<Route path="/" component={App}>
<IndexRoute component={Movies} />

Listing 14.4 Defining URL routing with React Router

Provides either browser or
hash history to the routerDefines the index

route: the route for
the empty URL /

288 CHAPTER 14 Working with data using Redux

<Route path="movies" component={Movies}>
<Route path=":id" component={Movie} />

</Route>
</Route>

</Router>
)

Both IndexRoute and Route are nested into the topmost route. This makes the Movies

component render for both the root and /movies locations. The individual movie

view needs a movie ID to fetch info about that particular movie from the Redux store,

so you define the path with a URL parameter. To do so, use the colon syntax:

path=":id". Figure 14.9 shows how the individual view and its URL look on a small

screen, thanks to responsive CSS. Notice that the URL is movies/8, where 8 is a movie

ID. Next, you’ll see how to fetch the data with Redux reducers.

Defines the movie ID
URL parameter with
a colon—:id

Figure 14.9 Individual movie

view on a small screen. The URL

includes the movie ID.

289Using the Redux data library

14.3.5 Combining reducers

Let’s look at the modules the createStore() function in src/index.js is applied to:

...
const reducers = require('./modules')
...

module.exports = render((
<Provider store={createStore(reducers)}>
{routes}

</Provider>
), document.getElementById('app'))

What does this do? You need to store movie data in the store. Perhaps in the future

you’ll implement additional parts of the store, such as user accounts or other entities.

So let’s use Redux’s feature that allows you to create as many distinct parts of the store

as you need, although you need only one at the moment. In a way, you’re creating a

better architecture by performing this middle step of combining reducers so that

later, you can extend your app effortlessly by adding more reducers to ./modules/

index.js (or ./modules), using the plug-in Node pattern.5 This approach is also called

splitting reducers (http://mng.bz/Wprj).

 Each reducer can change data in the store; but to make this operation safe, you

may need to divide the application state into separate parts and then combine them

into a single store. This divide-and-conquer approach is recommended for larger apps

in which you’ll have increasing numbers of reducers and actions. You can easily

combine multiple reducers with the combineReducers() function from redux

(ch14/redux-netflix/src/modules/index.js).

const { combineReducers } = require('redux')
const {

reducer: movies
} = require('./movies')

module.exports = combineReducers({
movies
// more reducers go here

})

You can pass as many reducers as you like and create independent branches in the

store. You can name them as you like. In this case, the movies reducer is imported and

then passed into the combineReducers() function as a property of a plain object with

the key "movies".

 This way, you declare a separate part of the store and call it “movies.” Every action that

the reducer from ./movies is responsible for will touch only this part and nothing else.

5 Azat Mardan, “Node Patterns: From Callbacks to Observer,” webapplog, http://mng.bz/p9vd.

Listing 14.5 Combining reducers

Imports (combined)
reducers from ./modules
(./modules/index.js)

Applies reducers

Imports combineReducers
from the combineReducers
property in redux

Applies ES6/ES2015 destructuring
assignment to create a reducer
object called movies from the
reducer property of ./movies.js

Exports the
combined

reducer
movies

290 CHAPTER 14 Working with data using Redux

14.3.6 Reducer for movies

Next, let’s implement the “movies” reducer. A reducer, in Redux, is a function that runs

every time any action is dispatched. It’s executed with two arguments:

 The first argument, state, is a reference to the part of the state that this

reducer manages.

 The second argument, action, is an object that represents the action that has

just been dispatched.6

In other words, the reducer inputs are results of previous actions: the current state

(state) and a current action (action). The reducer takes the current state and

applies the action. The result of a reducer is a new state. If your reducers are pure

functions without side effects (which they should be), you get all the benefits of using

Redux with React, such as hot reloading and time travel.

6 For detailed documentation of Array.prototype.reduce(), see the Mozilla Developer Network,
http://mng.bz/Z55j.

Reducers in JavaScript

The term reducers comes from functional programming. JavaScript has a somewhat

functional nature, so it has Array.reduce().

In a nutshell, a reduce method is an operation that summarizes a list of items so that

the input has multiple values and the output has a single value. The list on which a

reducer works can be an array, as is the case with JavaScript, or it can be another

data structure like a list, as is the case outside of JavaScript.

For example, you can return the number of occurrences of a name in a list of names.

The list of names is the input, and the number of occurrences is the output.

To use a reducer, you call a method and pass a reducing function that accepts the

following:

 Accumulator value—What is passed to the next iteration and what will eventu-

ally become the output

 Current value—Item from the list

With each iteration over the items in the list (or array in JS), the reducer function gets

the accumulator value. In JavaScript, the method is Array.reduce(). For example,

to get a name frequency, you can run the following reducer code, which uses a ternary

if the current value (curr) is “azat” and then adds 1 to the accumulator (acc):6

const users = ['azat', 'peter', 'wiliam','azat','azat']
console.log(users

.reduce((acc, curr)=>(
(curr == 'azat') ? ++acc : acc

), 0)
)

In Redux reducers, the accumulator value is the state object, and the current value

is the current action. The function result is the new state.

291Using the Redux data library

TIP Avoid putting API calls into reducers. Remember, reducers are supposed
to be pure functions with no side effects. They’re state machines; they
shouldn’t do asynchronous operations such as HTTP calls to an API. The best
place to put these types of async calls is in middleware (http://redux
.js.org/docs/advanced/Middleware.html) or the dispatch() action creator
(http://mng.bz/S31I; an action creator is a function that creates actions).
You’ll see dispatch() in a component later in this chapter.

A typical reducer is a function containing a huge switch/case statement:

const FETCH_MOVIES = 'movies/FETCH_MOVIES'
const FETCH_MOVIE = 'movies/FETCH_MOVIE'

const initialState = {
movies: [],
movie: {}

}

function reducer(state = initialState, action) {
switch(action.type) {

case FETCH_MOVIES:
return {

...state,
all: action.movies

}
case FETCH_MOVIE:
return {

...state,
current: action.movie

}
}

}

module.exports = {
reducer

}

But using switch/case is considered a bad practice by the luminary Douglas Crock-

ford in his classic JavaScript: The Good Parts (O’Reilly Media, 2008). There’s a handy

redux-actions library (https://github.com/acdlite/redux-actions) that can bring

this reducer function into a cleaner, more functional form. Instead of a huge

switch/case statement, you can use a more robust object.

 Let’s use handleActions from redux-actions. It takes a map-like plain object,

where keys are action types and values are functions. This way, only a single function is

called per action type; in other words, this function is cherry-picked by action type.

 The function from the previous snippet can be rewritten with redux-actions and

handleActions as shown next (ch14/redux-netflix/src/modules/movies.js).

ES6 spread operator
that passes the state
object key by key

Saves or
changes the

list of all
movies in
the store

Saves or changes a certain
movie in the store

Exports an object with the reducer
method using ES6 syntax

292 CHAPTER 14 Working with data using Redux

const { handleActions } = require('redux-actions')

const FETCH_MOVIES = 'movies/FETCH_MOVIES'
const FETCH_MOVIE = 'movies/FETCH_MOVIE'

const initialState = {
movies: [],
movie: {}

}

module.exports = {
fetchMoviesActionCreator: (movies) => ({
type: FETCH_MOVIES,
movies

}),
fetchMovieActionCreator: (index) => ({
type: FETCH_MOVIE,
index

}),
reducer: handleActions({
[FETCH_MOVIES]: (state, action) => ({

...state,
all: action.movies

}),
[FETCH_MOVIE]: (state, action) => ({

...state,
current: state.all[action.index - 1]

})
}, initialState)

}

This code looks similar to switch/case, but it’s more about mapping functions to

actions than selecting them in a potentially huge conditional statement.

14.3.7 Actions

To change data in the store, you use actions. To clarify, an action can be anything, not

just user input in a browser. For example, it could be the result of an async operation.

Basically, any code can become an action. Actions are the only sources of information

for the store; this data is sent from an app to the store. Actions are executed via

store.dispatch(), which I mentioned earlier, or via a connect() helper. But before

we look at how to call an action, let’s cover its type.

 Every action is represented by a plain object that has at least one property: type. It

can have as many other properties as you want, usually to pass data into the store. So,

every action has a type, like this:

{
type: 'movies/I_AM_A_VALID_ACTION'

}

Listing 14.6 Using the redux-actions library

Defines the FETCH_MOVIES
action creator that returns
an action object

Defines the FETCH_MOVIE
action creator that returns
an action object

Gets all movies in the
Movies component

Gets the current movie in the
Movie component by using index
(URL param for movie ID)

293Using the Redux data library

Here, the action type is a string.

NOTE It’s common to name actions using uppercase letters preceded by the
module name in lowercase letters. You can omit the module name if you’re
sure duplicates will never occur.

In modern Redux development, action types are declared as constant strings:

const FETCH_MOVIES = 'movies/FETCH_MOVIES'
const FETCH_MOVIE = 'movies/FETCH_MOVIE'

Here, two action types are declared. Both are strings that consist of two parts: the

name of the Redux module and the name of the action type. This practice may be use-

ful when you have different reducers with similarly named actions.

 Every time you want to change the application state, you need to dispatch a corre-

sponding action. An appropriate reducer function is executed, and you end up with

the updated application state. Think about data that you receive from an API or a

form a user fills in: it all can be placed or updated in the store. Here’s an example:

this.props.dispatch({
type: FETCH_MOVIE,
movie: {}

})

This is the series of steps:

1 Invoke dispatch() with an action object that has a type property and has data,

if needed, in a component.

2 Execute the corresponding reducer in the reducer module.

3 Update the new state in the store, which is available in components.

More on dispatching later. Let’s see how you can avoid passing/using action types in

your components.

14.3.8 Action creators

To change anything in the store, you need to run an action through all the reducers.

A reducer then changes the application state based on the action type. For this rea-

son, you always need to know the action type. But a shortcut lets you conceal action types

under action creators. Overall, the steps are as follows:

1 Invoke the action creator with data (if needed). The action creator can be

defined in the reducer module.

2 Dispatch the action in a component. No action type is needed.

3 Execute the corresponding reducer in the reducer module.

4 Update the new state in the store.

Check this out:

this.props.dispatch(fetchMoviesActionCreator({movie: {}}))

294 CHAPTER 14 Working with data using Redux

Simply put, an action creator is a function that returns an action. It’s as straightforward

as this:

function fetchMoviesActionCreator(movies) {
return {
type: FETCH_MOVIES,
movies

}
}

With action creators, you can hide complex logic in a single function call. In this case,

though, there’s no logic. The only operation this function performs is returning an

action: a plain object with a type property that defines this action and also a movies

property that has the value of an array of movies. If you were to extend the Netflix

clone so it could add a movie, you’d need an addMovie() action creator:

function addMovie(movie) {
return {
type: ADD_MOVIE,
movie

}
}

Or how about watchMovie()?

function watchMovie(movie, watchMovieIndex, rating) {
return {
type: WATCH_MOVIE,
movie,
index: watchMovieIndex,
rating: rating,
receivedAt: Date.now()

}
}

Remember, an action must have the type property!

 To be able to dispatch actions, you must connect components to the store. This is

getting more interesting, because you’re close to state updates.

14.3.9 Connecting components to the store

Now that you’ve learned how to put data into the store, let’s see how you can access

store data from components. Luckily, the Provider component has a feature to bring

the data into your components in properties. But to access the data, you’ll need to con-

nect your component to the store explicitly.

 By default, a component isn’t connected to a data store; and having it somewhere

in the hierarchy of the topmost Provider component isn’t enough. Why? Well, think

of connecting as an explicit opt-in for certain components.

295Using the Redux data library

 If you remember, there are two types of components, according to React best prac-

tices: presentational (dumb) and container (smart), as discussed in chapter 8. Presen-

tational components should not need the store; they should just consume properties.

At the same time, container components need the store and the dispatcher. Even the

definition of container components in the Redux documentation specifies that they

subscribe to the store (http://mng.bz/p4f9). All Provider is doing is providing a

store for all components automatically so that some of them can subscribe/connect to

it. Thus, for container components, you need both Provider and the store.

 To sum up, a connected component can access any data from the store in its prop-

erties. How do you connect components to the store? With the connect() method, of

course! Confused? Let’s look at an example. Think about your root component, App.

It will use Movies, which at minimum should have this code to display the list of mov-

ies (the actual Movies component has a bit more code):

class Movies extends React.Component {
render() {
const {

movies = []
} = this.props

return (
<div className={styles.movies}>

{movies.map((movie, index) => (
<div key={index}>

{movie.title}
</div>

))}
</div>

)
}

}

Currently, the Movies component isn’t connected to the store despite having

Provider as a parent. Let’s connect it by adding the following snippet. The connect()

function comes with the react-redux package and accepts up to four arguments, but

you’ll use just one at the moment:

const { connect } = require('react-redux')
class Movies extends React.Component {

...
}
module.exports = connect()(Movies)

The connect() function returns a function that’s then applied to the Movies

component. As a result not of exporting Movies but of calling connect() with Movies,

and having Provider as a parent, the Movies component becomes connected to the

store.

 Now the Movies component can receive any data from the store and dispatch

actions (you didn’t see this coming, did you?). But to receive the data in the format

296 CHAPTER 14 Working with data using Redux

you need, you must map the state to component properties by creating a simple mapper

function (expression is a more precise term, because you need to return the result).

 In some tutorials, you may see a function called mapStateToProps(), although it

doesn’t have to be an explicitly declared function. Using an anonymous arrow func-

tion is just as clean and straightforward. This mapper function goes into a special

method, connect(), from your favorite react-redux. Remember, state is the first

argument of connect():

module.exports = connect(function(state) {
return state

})(Movies)

Or, here’s the fancy, hipster, ESNext React-friendly implicit return style:

module.exports = connect(state => state)(Movies)

With this setup, you take the entire application state from the store and put it into the

properties of the Movies component. You’ll find that, usually, you need only a limited

subset of the state. In the example, Movies only needs movies.all:

class Movies extends React.Component {
render() {
const {

children,
movies = [],
params = {}

} = this.props
...

module.exports = connect(({movies}) => ({
movies: movies.all

}), {
fetchMoviesActionCreator

})(Movies)

And this is the Movie snippet, which only maps movies.current from the state:

class Movie extends React.Component {
render() {
const {

movie = {
starring: []

}
} = this.props
...

module.exports = connect(({movies}) => ({
movie: movies.current

}), {
fetchMovieActionCreator

})(Movie)

297Using the Redux data library

You’ll also see that if the store is empty, the component won’t receive any extra prop-

erties, because, well, there aren’t any.

 Some Redux magic happens next: every time part of the store is updated, all

components that depend on that part receive new properties and therefore are re-

rendered. This happens when you dispatch an action, which means your components

are now loosely interdependent and update only when the store is updated. Any

component can cause this update by dispatching a proper action. There’s no need to

use classic callback functions passed as properties and stream them from the topmost

component down to the most deeply nested; just connect your components to the store.

Dispatching an action

To apply changes to data in the store, you need to dispatch an action. Once you’ve

connected the component to the store, you can receive properties mapped to certain

properties of the application state, and you also receive the dispatch property.

 The dispatch() method is a function that takes an action as an argument and dis-

patches (sends) it into the store. Hence, you can dispatch an action by invoking

this.props.dispatch() with an action:

componentWillMount() {
this.props.dispatch({
type: FETCH_MOVIE,
movie: {}

})
}

type is a string value that the Redux library applies to all reducers matching this type.

After the action has been dispatched, which usually means you’ve changed the store,

all components that are connected to the store and that have properties mapped from

the updated part of the application state are rerendered. There’s no need to check

whether components should update or do anything at all. You can rely on new proper-

ties in components’ render() function:

class Movie extends React.Component {
render() {
const {

movie = {
starring: []

}
} = this.props

...

You can replace a bare action (an object with type) with an action creator (the

fetchMovieActionCreator() function):

const fetchMovieActionCreator = (response) => {
type: FETCH_MOVIE,
movie: response.data.data.movie

}

14.3.10

298 CHAPTER 14 Working with data using Redux

...
componentWillMount() {
... // Make AJAX/XHR request
this.props.dispatch(fetchMovieActionCreator(response))

}

Because fetchMovieActionCreator() returns a plain object that’s identical to the

object in the previous example (type and movie keys), you can call this action-creator

fetchMovieActionCreator() function and pass the result to dispatch():

1 Fetch data asynchronously (response).

2 Create an action (fetchMovieActionCreator()).

3 Dispatch the action (this.props.dispatch()).

4 Execute the reducer.

5 Update the new state in properties (this.props.movie).

Passing action creators into component properties

You can define action creators as functions right in the component file, but there’s

another way to use action creators: you can define them in a module, import them,

and put them into component properties. To do that, you can use the second argu-

ment of the connect() function and pass your action creator as a method:

const {
fetchMoviesActionCreator

} = require('modules/movies.js')
class Movies extends Component {

...
}
module.exports = connect(state => ({

movies: state.movies.all
}),{

fetchMoviesActionCreator
})(Movies)

Now you can refer to fetchMovieActionCreator() via properties and pass an action

without using dispatch(), like this:

class Movies extends Component {
componentWillMount() {
this.props.fetchMoviesActionCreator()

}
render() {
const {

movies = []
} = this.props

return (
<div className={styles.movies}>

{movies.map((movie, index) => (
<div key={index}>

14.3.11

Imports the action creator
from client/modules/movies.js

Maps the data to populate
the movies property

Calls the action
creator directly to
dispatch the action

Assigns movies to
this.props.movies or
to an empty array
(ES6 destructuring)

299Using the Redux data library

{movie.title}
</div>

))}
</div>

)
}

}

This new action creator is automatically wrapped in a valid dispatch() call. You don’t

need to worry about doing it yourself. Awesome! This is how the Movies component is

implemented in ch14/redux-netflix/src/components/movies/movies.js.

 For clarity, you can rename fetchMoviesActionCreator() as fetchMovies() or do

this:

const {
fetchMoviesActionCreator

} = require('modules/movies.js')
class Movies extends Component {

componentWillMount() {
this.props.fetchMovies()

}
...

module.exports = connect(state => ({
movies: state.movies.all

}), {
fetchMovies: fetchMoviesActionCreator

})(Movies)

The first argument to connect(), which is a function that maps state to component

properties, takes the entire state (state) as the only argument and returns a plain

object with a single property, movies:

...
module.exports = connect(state => ({

movies: state.movies.all
}), {

fetchMoviesActionCreator
})(Movies)

You can make the code more eloquent by destructuring state.movies:

module.exports = connect(({movies}) => ({
movies: movies.all

}), {
fetchMoviesActionCreator

})(Movies)

In the render() function of the Movies component, the value of movies is obtained

from properties and is rendered into a collection of sibling DOM elements. Each is a

div element with its inner text set to movie.title. This is a typical approach to ren-

dering an array into a fragment of sibling DOM elements.

Dispatches with
fetchMovies()

Renames the
action method

300 CHAPTER 14 Working with data using Redux

 Wonder what the final Movies component looks like? Here’s the code

(ch14/redux-netflix/src/components/movies/movies.js).

const React = require('react')
const { connect } = require('react-redux')
const { Link } = require('react-router')
const movies = require('../../movies.json')
const {

fetchMoviesActionCreator
} = require('modules/movies.js')
const styles = require('./movies.css')

class Movies extends React.Component {
componentWillMount() {
this.props.fetchMovies(movies)

}

render() {
const {

children,
movies = [],
params = {}

} = this.props

return (
<div className={styles.movies}>

<div className={params.id ? styles.listHidden : styles.list}>
{movies.map((movie, index) => (

<Link
key={index}
to={`/movies/${index + 1}`}>
<div
className={styles.movie}
style={{backgroundImage: `url(${movie.cover})`}} />

</Link>
))}

</div>
{children}

</div>
)

}
}

module.exports = connect(({movies}) => ({
movies: movies.all

}), {
fetchMovies: fetchMoviesActionCreator

})(Movies)

As you can see, swapping for async data is straightforward: make an async call (using the

fetch() API, axios, and so on), and then dispatch an action in componentWillMount().

Listing 14.7 Passing action creators into Movies properties

Loads a mock database
from a JSON file (thanks to
json-loader) into movies

Dispatches an action using
fetchMoviesActionCreator() (FETCH_MOVIES)
with the data from the JSON object movies,
which could be substituted for an AJAX/XHR
call to an API server

Passes children as defined in
the React Router hierarchy

Connects the component to a store
that provides access to store data and
the fetchMoviesActionCreator() action
creator from properties

301Using the Redux data library

Or even better, let’s use componentDidMount(), which is recommended by the React

team for AJAX/XHR calls:

componentWillMount() {
// this.props.fetchMovies(movies)

}
componentDidMount() {

fetch('/src/movies.json', {method: 'GET'})
.then((response)=>{return response.json()})
.then((movies)=>{

this.props.fetchMovies(movies)
})

}

And you can do the same thing with POST, PUT, and other HTTP calls that you did with

GET. You’ll be making some of these calls in the next chapter.

 We’re finished with Movies. Next, we’ll cover the Movie component—but only

briefly, because much of the Redux wiring is similar to that in Movies. What’s different

is that Movie will get the URL parameter’s movie ID. React Router puts it in

this.props.params.id. This ID will be sent via action dispatch and used in the

reducer to filter out only a single movie. As a reminder, these are the reducers from

src/modules/movies.js:

...
reducer: handleActions({
[FETCH_MOVIES]: (state, action) => ({

...state,
all: action.movies

}),
[FETCH_MOVIE]: (state, action) => ({

...state,
current: state.all[action.index - 1]

})
},

...

Now, let’s look at the implementation of Movie, which uses a different state-to-properties

mapping by taking a movie ID from a React Router’s URL parameter and using it as an

index (src/components/movie/movie.js).

const React = require('react')
const { connect } = require('react-redux')
const { Link } = require('react-router')
const {

fetchMovieActionCreator

Listing 14.8 Movie implementation

Doesn’t dispatch with data
imported with require (sync)

Fetches the JSON file
that will be served by
the Webpack dev
server (async)

Dispatches the action with the
data that came asynchronously

from the server via a GET request

Uses the movie index to
return a single movie

302 CHAPTER 14 Working with data using Redux

} = require('modules/movies.js')
const styles = require('./movie.css')

class Movie extends React.Component {
componentWillMount() {
this.props.fetchMovie(this.props.params.id)

}
componentWillUpdate(next) {
if (this.props.params.id !== next.params.id) {

this.props.fetchMovie(next.params.id)
}

}
render() {
const {

movie = {
starring: []

}
} = this.props

return (
<div

className={styles.movie}
style={{backgroundImage: `linear-gradient(90deg, rgba(0, 0, 0, 1) 0%,

➥ rgba(0, 0, 0, 0.625) 100%), url(${movie.cover})`}}>
<div

className={styles.cover}
style={{backgroundImage: `url(${movie.cover})`}} />

<div className={styles.description}>
<div className={styles.title}>{movie.title}</div>
<div className={styles.year}>{movie.year}</div>
<div className={styles.starring}>

{movie.starring.map((actor = {}, index) => (
<div
key={index}
className={styles.actor}>
{actor.name}

</div>
))}

</div>
</div>
<Link

className={styles.closeButton}
to="/movies">

</Link>
</div>

)
}

}

module.exports = connect(({movies}) => ({
movie: movies.current

}), {
fetchMovie: fetchMovieActionCreator

})(Movie)

Imports a CSS file

Dispatches only
when the URL
param changes

Applies styles to
elements inline

Maps the data
from the reducer
to the property

303Using the Redux data library

Running the Netflix clone

It’s time to run the project. Of course, you could have done it in the beginning,

because the start script is in package.json. This script uses an npm library concurrently

to run two processes at the same time: Webpack build in watch mode and Webpack

development server (port 8080):

"start": "concurrently \"webpack --watch --config webpack.config.js\"

➥ \"webpack-dev-server\""

Navigate to the project root (ch14/redux-netflix). Install the dependencies with npm i,

and run the project from the project folder: npm start. Open your favorite browser at

http://localhost:8080.

 Click around to see that the routing is working and the images are loading regard-

less of whether you used mock data (require()) or loaded it via the GET request. Notice

that if you’re at http://localhost:8080/movies/1 and refresh the page, you don’t see

anything. You’ll take care of that in the next chapter, where you’ll implement Node and

Express server to support hash-less URLs. Now it’s time to wrap up this chapter.

Redux wrap-up

Redux provides a single place to store an entire application’s data; the only way to change

the data is through actions. This makes Redux universal—you can use it anywhere, not

only in React apps. But with the react-redux library, you can use the connect() function

to connect any component to the store and make it react to any change there.

 This is the basic idea of reactive programming: an entity A that observes changes in

entity B reacts to those changes as they occur, but the opposite is not true. Here, A is

any of your components, and B is the store.

 As you connect (connect()) the component and map properties of the store to a

component’s properties (this.props), you can refer to the latter in the render()

function. Usually, you need to first update the store with data to refer to that data.

This is why you call an action in a component’s componentWillMount() function. By

the time the component is mounted for the first time and render() is called, the part

of the store that the component refers to may be empty. But once the store data is

updated, it’s preserved. This is why in the Netflix clone example, the list of movies

remains intact even after you navigate across the app’s locations (pages or views). Yes.

Data doesn’t disappear from the store after a component is unmounted, unlike when

you use the component’s state (remember this.state() and this.setState()?).

Thus, your Redux store can serve different parts of your application that require the

same data without the data having to be reloaded.

 It’s also safe to update component properties in the render() function via the

store by dispatching an action, because this operation is deferred. On the other hand,

without Redux, you can’t use setState() at any point when the component may be

updated: render(), componentWillMount(), or componentWillUpdate(). This feature

of Redux adds to its flexibility.

14.3.12

14.3.13

304 CHAPTER 14 Working with data using Redux

14.4 Quiz

1 Name the two main arguments of a reducing function (callback) to the

Array.reduce() method in JavaScript.

2 Redux offers simplicity, a larger ecosystem, and a better developer experience

than Facebook Flux (flux). True or false?

3 Which of the following would you use to create a store and provider? new Provider

(createStore(reducers)), <Provider store={createStore(reducers)}>, or

provider(createStore(reducers))

4 Redux needs a dispatcher because that’s what Flux defines. True or false?

5 In this project, movies.all fetches all movies, and movies.current fetches the

current movie. They’re used in the Movies and Movie components, respectively,

in the connect call. Where do you define the logic of movies.all and movies

.current?

14.5 Summary

 Unidirectional data flow provides predictability and ease of maintenance for

React apps.

 Flux is the recommended architecture when working with React and unidirec-

tional data flow.

 Redux is one of the most popular implementations of the Flux architecture.

 With Redux, you can dispatch an action or put in into the properties object.

 Redux’s connect() lets you access store data and dispatch actions—necessary

features for container (smart) components.

 The Redux Provider component provides access to the store to children so you

don’t have to pass the store in properties manually.

 A reducer is a file with a reducing function that uses (typically) a switch/case

statement or handleActions to apply actions to a new state: that is, the current

state and actions are input, and the new state is output.

 Redux combineReducers conveniently merges multiple reducers, letting you

split the code for those reducers into various modules/files.

14.6 Quiz answers

1The accumulator value and the current value are the two primary arguments.

Without them, you can’t summarize a list.

2True. See the introduction to this chapter and Dan Abramov’s post “Why Use

Redux over Facebook Flux?” on Stack Overflow (http://mng.bz/z9ok).

3<Provider store={createStore(reducers)}>

4False. Redux adheres to Flux but doesn’t require a dispatcher, so Redux is simpler

to implement.

5In src/modules/movies.js, in reducers.

305

Working with
 data using GraphQL

In chapter 14, you implemented a Netflix clone with Redux. The data came from a

JSON file, but you could instead have used a RESTful API call using axios or

fetch(). This chapter covers one of the most popular options for providing data to

a front-end app: GraphQL.

 Thus far, you’ve been importing a JSON file as your back-end data store or mak-

ing RESTful calls to fetch the same file to emulate a GET RESTful endpoint. Ah,

mocking APIs. This approach is good for prototyping, because you have the front

end ready; when you need persistent storage, you can replace mocks with a back-

end server, which is typically a REST API (or, if you really have to, SOAP1).

This chapter covers

 Requesting data from the server with GraphQL and Axios

 Supplying data to a Redux store

 Implementing a GraphQL back end with Node/Express

 Supporting hash-less URL routing

1 SOAP is a mostly outdated protocol that relied heavily on XML and has now been replaced by REST.

Watch this chapter’s introduction video by

scanning this QR code with your phone or going

to http://reactquickly.co/videos/ch15.

306 CHAPTER 15 Working with data using GraphQL

 Imagine that the Netflix clone API has to be developed by another team. You agree

on the JSON (or XML) data format over the course of a few meetings. They deliver.

The handshake is working, and your front-end app gets all the data. Then, the prod-

uct owners talk to the clients and decide they want a new field to show stars and rat-

ings for movies. What happens when you need an extra field? You must implement a

new movies/:id/ratings endpoint, or the back-end team needs to bump up the ver-

sion of the old endpoint and add an extra field.

 Maybe the app is still in the prototyping phase. If so, the field could probably be

added to the existing movies/:id. It’s easy to see that over time, you’ll get more

requests to change formats and structure. What if ratings must appear in movies as

well? Or, what if you need new nested fields from other collections, such as friend rec-

ommendations? In the age of rapid agile development and lean startup methodology,

flexibility is an advantage. The faster these fields and data can be adapted to the end

product, the better. An elegant solution called GraphQL clears many of these hurdles.

NOTE The source code for the examples in this chapter is at www.manning
.com/books/react-quickly and https://github.com/azat-co/react-quickly/
tree/master/ch15. You can also find some demos at http://
reactquickly.co/demos.

15.1 GraphQL

In this chapter, you’ll continue developing the Netflix clone by adding a server to it.

This server will provide a GraphQL API, a modern way of exposing data to React apps.

GraphQL is often used with Relay; but as you’ll see in this example, you can use it

with Redux or any other browser data library. You’ll use axios for the AJAX/

XHR/HTTP requests.

 When you work with GraphQL and Redux, the server (back end and web server)

can be built using anything (Ruby, Python, Java, Go, Perl), not necessarily Node.js; but

Node is what I recommend, and that’s what you’ll use in this section because it lets

you use JavaScript across the entire development tech stack.

 In a nutshell, GraphQL (https://github.com/graphql/graphql-js) uses query

strings that are interpreted by a server (typically Node), which in turn returns data in

a format specified by those queries. The queries are written in a JSON-like format:

{
user(id: 734903) {
id,
name,
isViewerFriend,
profilePicture(size: 50) {

uri,
width,
height

}
}

}

307GraphQL

And the response is good-old JSON:

{
"user" : {
"id": 734903,
"name": "Michael Jackson",
"isViewerFriend": true,
"profilePicture": {

"uri": "https://twitter.com/mjackson",
"width": 50,
"height": 50

}
}

}

The Netflix clone server could use REST or older SOAP standards. But with the newer

GraphQL pattern, you can reverse control by letting clients (front-end or mobile apps)

dictate what data they need instead of coding this logic into server endpoints/routes.

Some of the advantages of this inverted approach are as follows:2

 Client-specific queries—Clients get exactly what they need.

 Structure, arbitrary code—The uniform API offers server-side flexibility.

 Strong typing—More robust validation and certainty in responses, plus easier

data consumption by strongly typed languages such as TypeScript, Swift, Java,

and Objective-C.

 Hierarchical queries—Queries follow the data they return, which is important

because data is used by hierarchical views.

 Faster prototyping—There’s no need for extensive back-end development or large,

separate back-end and API teams, because the query has a single endpoint.

 Fewer API calls—The front-end app makes fewer server requests because the

data structure is dictated by the front-end app and can contain what was previ-

ously obtainable only via several REST endpoints.

2 For more on the advantages of GraphQL, such as strong typing, see Nick Schrock, “GraphQL Introduction,”
React, May 1, 2015, http://mng.bz/DS65.

Relay and Relay Modern

You can also consume a GraphQL API in a React application using Relay

(https://facebook.github.io/relay; graphql-relay-js and react-relay on npm).

Some developers prefer to use Relay instead of Redux when working with a GraphQL

back end. If you look at the examples provided in the documentation, you may see a

similarity to how Redux connects components; and instead of a store, you have a

remote GraphQL API.

Whereas React allows you to define views as components (UI) by composing many

simple components to build complex UIs and apps, Relay lets components specify

what data they need so the data requirements become localized. React components

don’t care about the logic and rendering of other components.

308 CHAPTER 15 Working with data using GraphQL

15.2 Adding a server to the Netflix clone3

To deliver data to your React app, you’ll use a simple server made with Express

(https://github.com/expressjs/express) and GraphQL. Express is great at organizing

and exposing API endpoints, and GraphQL takes care of making your data accessible

in a browser-friendly way, as JSON.

 The project structure is as follows (you’ll reuse a lot of code from redux-netflix):

/redux-graphql-netflix
/build
/public

index.js
style.css

server.js
/client
/components

/app
app.css
app.js

/movie
movie.css
movie.js

/movies
movies.css
movies.js

/modules
index.js
movies.js

index.js
routes.js

/node_modules
/server
index.js
movies.json
schema.js

index.html
package.json
webpack.config.js
webpack.server.config.js

3 See https://facebook.github.io/relay/docs/relay-modern.html.

(continued)

The same is true with Relay: components keep their data closer to themselves, which

allows for easier composition (building complex UIs and apps from simple components).

Relay Modern is the latest version of Relay. It’s easier to use and more extensible.3

If you or your team plan to use GraphQL seriously, then I highly recommend looking

into Relay/Relay Modern as well.

Compiled files

Compiled front-end files

Compiled back-end file

React source code files
for the front end

Express source code
file for the back end

GraphQL schema

309Adding a server to the Netflix clone

The data will still be taken from a JSON file, but this time it’s a server file. You can eas-

ily replace the JSON file movies.json with database calls in server/schema.js. But

before we discuss schemas, let’s install all the dependencies, including Express.

 The following listing shows the package.json file (ch15/redux-graphql-netflix/

package.json). Do you know what to do? Copy it and run npm i, of course!

{
"name": "redux-graphql-netflix",
"version": "1.0.0",
"description": "A sample project in React, GraphQL, Express and Redux that

➥ copies Netflix's features and workflow",
"main": "index.js",
"scripts": {
"start": "concurrently \"webpack --watch --config webpack.config.js\"

➥ \"webpack --watch --config

➥ webpack.server.config.js\" \"webpack-dev-server\" \"nodemon

➥ ./build/server.js\""
},
"repository": {
"type": "git",
"url": "git+https://github.com/azat-co/react-quickly.git"

},
"author": "Azat Mardan (http://azat.co)",
"license": "MIT",
"bugs": {
"url": "https://github.com/azat-co/react-quickly/issues"

},
"homepage": "https://github.com/azat-co/react-quickly#readme",
"devDependencies": {
"babel-core": "6.11.4",
"babel-eslint": "6.1.2",
"babel-loader": "6.2.4",
"babel-polyfill": "6.9.1",
"babel-preset-es2015": "6.9.0",
"babel-preset-react": "6.11.1",
"babel-preset-stage-0": "6.5.0",
"concurrently": "2.2.0",
"css-loader": "0.23.1",
"eslint": "3.1.1",
"eslint-plugin-babel": "3.3.0",
"eslint-plugin-react": "5.2.2",
"extract-text-webpack-plugin": "1.0.1",
"json-loader": "0.5.4",
"nodemon": "1.10.0",
"style-loader": "0.13.1",
"webpack": "1.13.1",
"webpack-dev-server": "1.14.1",
"axios": "0.13.1",
"clean-tagged-string": "0.0.1-b6",
"react": "15.2.1",
"react-dom": "15.2.1",

Listing 15.1 Netflix clone package.json

Adds the start script, which will
compile the browser and server

code and launch the server

Adds the nodemon dev tool
to start and restart Express

Adds axios to make HTTP calls with promises
(similar to fetch) to use on the front end

Adds a utility to remove spaces from ES6
string templates and do other cleanup

310 CHAPTER 15 Working with data using GraphQL

"react-redux": "4.4.5",
"react-router": "2.6.0",
"redux": "3.5.2",
"redux-actions": "0.10.1"

},
"dependencies": {
"express": "4.14.0",
"express-graphql": "0.5.3",
"graphql": "0.6.2"

}
}

Next, you’ll implement the main server file server/index.js.

15.2.1 Installing GraphQL on a server

The powerhouse of the web server implemented with Express and Node is its starting

point (sometime referred to as an entry point): index.js. This file is in the server folder

because it’s used only on the back end and must not be exposed to clients, for security

concerns (it can contain API keys and passwords). The file’s high-level structure is as

follows:

const path = require('path')
const express = require('express')
const graphqlHTTP = require('express-graphql')
// ...
const app = express()

app.use('/q',
// ...

)

app.use('/dist',
// ...

)

app.use('*',
// ...

})

app.listen(PORT, () => console.log(`Running server on port ${PORT}`))

Let’s fill in the missing pieces. First, keep in mind that you need to deliver the same file,

index.html, for every route except the API endpoint and bundle files. This is necessary

because when you use the HTML5 History API and go to a location using a hash-less URL

like /movies/8, refreshing the page will make the browser query that exact location.

 You’ve probably noticed that in the previous Netflix clone version, when you

refreshed/reloaded the page on an individual movie (such as /movies/8), it didn’t

show you anything. The reason is that you need to implement something additional

Adds the Express Node web
server framework to use on
the back end

Adds the GraphQL plug-in for
Express to use on both the
back end and front end

Adds GraphQL to use on both
the back end and front end

Imports dependencies,
including GraphQL for Express

Defines a single GraphQL route
that will serve all kinds of data

Defines a route to serve the front-end app
with its static assets from the /dist URL

Serves the main HTML page for any
requests that aren’t for /dist/* URLs

Boots up the server

311Adding a server to the Netflix clone

for browser history to work. This code must be on the server, and it’s responsible for

sending out the main index.html file on all requests (even /movies/8/).

 In Express, when you need to declare a single operation for every route, you can

use * (asterisk):

app.use('*', (req, res) => {
res.sendFile('index.html', {
root: PWD

})
})

Sending the HTML file per any location (* URL pattern) doesn’t do the trick. You’ll

end up with 404 errors, because this HTML includes references to compiled CSS and

JS files (/dist/styles.css and /dist/index.js). So, you need to catch those locations first:

app.use('/dist/:file', (req, res) => {
res.sendFile(req.params.file, {
root: path.resolve(PWD, 'build', 'public')

})
})

As an alternative, I recommend that you use using a piece of Express middleware

called express.static(), like this:

app.use('/dist',
express.static(path.resolve(PWD, 'build', 'public'))

)

TIP For more information about middleware and tips on Express, refer to
appendix C and my books Pro Express.js (Apress, 2014) and Express Deep API
Reference (Apress, 2014).

Static, public, and dist

The importance of having the public folder inside build cannot be overstated. If you

don’t restrict the act of serving resources (such as files) to a subfolder (such as dist
or public), then all of your code will be exposed to anyone who visits the server. Even

back-end code such as server.js can be exposed if you forego using a subfolder. For

example, this

// Anti-pattern. Don't do this or you'll be fired
app.use('/dist',

express.static(path.resolve(PWD, 'build'))
)

will expose server.js to attackers—and it might contain secrets, API keys, passwords,

and the details of implementation over the /dist/server.js URL.

By using a subfolder such as dist or public, exposing only it to the world (over HTTP),

and putting only the front-end files in this exposed subfolder, you can restrict unau-

thorized access to other files.

312 CHAPTER 15 Working with data using GraphQL

For the GraphQL API to work, you need to set up one more route (/q) in which you

use the graphqlHTTP library along with a schema (server/schema.js) and session

(req.session) to respond with data:

app.use('/q', graphqlHTTP(req => ({
schema,
context: req.session

})))

And finally, to make the server work, you need to make it listen to incoming requests

on a certain port:

app.listen(PORT, () => console.log(`Running server on port ${PORT}`))

Here, PORT is an environment variable. It’s a variable that you can pass into the process

from the command-line interface, like this:

PORT=3000 node ./build/server.js

WARNING In chapter 14, you used port 8080, because that’s the default value
for the Webpack Development Server. There’s nothing wrong with using 8080
for this example’s Express server, but for some weird historical reason, the con-
vention emerged that Express apps run on port 3000. Maybe we can blame Rails
for that!

The server also uses another variable declared in uppercase: PWD. It’s an environment

variable, too, but it’s set by Node to the project directory: that is, the path to the folder

where the package.json file is located, which is the root folder of your project.

 And finally, you use the graphqlHTTP and schema variables. You receive

graphqlHTTP from the express-graphql package, and schema is your data schema

built using GraphQL definitions.

 The following listing shows the complete server setup (ch15/redux-graphql-netflix/

server/index.js).

const path = require('path')
const express = require('express')
const graphqlHTTP = require('express-graphql')

Listing 15.2 Express server to provide data and static assets

nodemon vs. node

Recall that in package.json, you use nodemon:

nodemon ./build/server.js

Using nodemon is the same as running node, but nodemon will restart the code if you

made changes to it.

313Adding a server to the Netflix clone

const schema = require('./schema')
const {

PORT = 3000,
PWD = __dirname

} = process.env
const app = express()

app.use('/q', graphqlHTTP(req => ({
schema,
context: req.session

})))

app.use('/dist', express.static(path.resolve(PWD, 'build', 'public')))

app.use('*', (req, res) => {
res.sendFile('index.html', {
root: PWD

})
})

app.listen(PORT, () =>,
console.log(`Running server on port ${PORT}`))

GraphQL is strongly typed, meaning it uses schemas as you saw in /q. The schema is

defined in server/schema.js, as you saw in the project structure. Let’s see what the

data looks like: the structure of the data will determine the schema you’ll use.

15.2.2 Data structure

The app is a UI that displays data about movies. Therefore, you need to have this data

somewhere. The easiest option is to save it in a JSON file (server/movies.json). The file

contains all the movies, and each movie can be represented by a plain object with a

bunch of properties, so the entire file is an array of objects:

[{
"title": "Pirates of the Caribbean: On Stranger Tides"
...

}, {
"title": "Pirates of the Caribbean: At World's End"
...

}, {
"title": "Avengers: Age of Ultron"
...

}, {
"title": "John Carter"
...

}, {
"title": "Tangled"
...

}, {
"title": "Spider-Man 3"
...

}, {

Saves the working directory
of this file (PWD = “print
working directory”)

Boots up the server
using 3000 as the port
value (not 8080)

314 CHAPTER 15 Working with data using GraphQL

"title": "Harry Potter and the Half-Blood Prince"
...

}, {
"title": "Spectre"
...

}, {
"title": "Avatar"
...

}, {
"title": "The Dark Knight Rises"
...

}]

NOTE The example uses data for 10 of the most expensive movies according
to Wikipedia (https://en.wikipedia.org/wiki/List_of_most_expensive_films).

Each object contains information such as the movie’s title, cover URL, year released,

production cost in millions of dollars, and starring actors. For example, Pirates of the

Caribbean has this data:

{
"title": "Pirates of the Caribbean: On Stranger Tides",
"cover": "/dist/images/On_Stranger_Tides_Poster.jpg",
"year": "2011",
"cost": 378.5,
"starring": [{
"name": "Johnny Depp"

}, {
"name": "Penélope Cruz"

}, {
"name": "Ian McShane"

}, {
"name": "Kevin R. McNally"

}, {
"name": "Geoffrey Rush"

}]
}

Currently, each movie is an object that only has a title. Later, you can add as many

properties as you want; but right now let’s focus on the data schema.

15.2.3 GraphQL schema

You can use any data source with GraphQL: an SQL database, an object store, a bunch

of files, or a remote API. Two things matter:

 Purity of the data—that is, identical requests should return identical responses

(a.k.a. idempotent).

 It should be possible to represent the data with JSON.

You have the list of movies stored in a JSON file, so you can import it:

const movies = require('./movies.json')

315Adding a server to the Netflix clone

A typical GraphQL schema defines a query with fields and arguments. The example

data schema has only a list of objects, and each object has only a single property:

title. The schema definition is shown next. This is a basic example—you’ll see the

full schema later:

const movies = require('./movies.json')
new graphql.GraphQLSchema({

query: new graphql.GraphQLObjectType({
name: 'Query',
fields: {

movies: {
type: new graphql.GraphQLList(new graphql.GraphQLObjectType({

name: 'Movie',
fields: {

title: {
type: graphql.GraphQLString

}
}

})),
resolve: () => movies

}
}

})
})

The core idea is that when the query is performed, the function assigned to the

resolve key is executed. After that, only properties of objects that are requested are

picked from the result of this function call. These properties will be in the resulting

objects, and fields that aren’t listed won’t appear. Thus you need to specify what prop-

erties you want to receive every time you perform a query. This makes your API flexi-

ble and efficient: you can arrange parts of the data as you want them in the runtime.

 The example has two types of queries and more fields. The following listing shows

how you can implement them (ch15/redux-graphql-netflix/server/schema.js).

const {
GraphQLSchema,
GraphQLObjectType,
GraphQLList,
GraphQLString,
GraphQLInt,
GraphQLFloat

} = require('graphql')
const movies = require('./movies.json')

const movie = new GraphQLObjectType({
name: 'Movie',
fields: {

title: {

Listing 15.3 GraphQL schema

Imports movies from a
file (mock database)

Defines the title field in
the schema as a string

Defines the getter for this query,
which will send data from the JSON
file (could be a database call)

Sets the name of the
object to “movie” so
you can use it in two
queries

Defines all
the fields

with proper
types

316 CHAPTER 15 Working with data using GraphQL

type: GraphQLString
},
cover: {
type: GraphQLString

},
year: {
type: GraphQLString

},
cost: {
type: GraphQLFloat

},
starring: {
type: new GraphQLList(new GraphQLObjectType({

name: 'starring',
fields: {

name: {
type: GraphQLString

}
}

}))
}

}
})

module.exports = new GraphQLSchema({
query: new GraphQLObjectType({

name: 'Query',
fields: {
movies: {

type: new GraphQLList(movie),
resolve: () => movies

},
movie: {

type: movie,
args: {

index: {
type: GraphQLInt

}
},
resolve: (r, {index}) => movies[index - 1]

}
}

})
})

Phew! Now let’s move to the front end and see how to query this neat little server.

15.2.4 Querying the API and saving the response into the store

To get the list of movies, you need to query the server. And after the response has

been received, you must pass it to the store. This operation is asynchronous and

involves an HTTP request, so it’s time to unveil axios.

Uses float
for the cost

Sends back the entire
array of movies

Sends back only a single
movie using the index

(from the URL parameter)

317Adding a server to the Netflix clone

axios uses promise-based requests, not unlike fetch(). To perform a GET HTTP call,

use the get property of axios:4

axios.get('/q')

Because axios returns a promise, you can immediately access its then property:

axios.get('/q').then(response => response)

4 See my courses on ES6 and ES7+ES8 at https://node.university/p/es6 and https://node.university/p/es7-
es8.

Promises and callbacks

The axios library implements promise-based HTTP requests. This means it returns a

promise immediately after calling a function. Because an HTTP request isn’t guaran-

teed to be performed immediately, you need to wait until this promise is resolved.

To get data from a promise once it’s resolved, you use its then property. It accepts

a function as a callback, which is called with a single argument; and this argument

is the result of the initial operation—in this case, an HTTP call:

getPromise(options)
.then((data)=>{
console.log(data)

})

Using a promise and a callback (in then) is an alternative to using just a callback, in

the sense that the previous code can be rewritten without promises:

getResource(options, (data)=>{
console.log(data)

})

There’s a controversy associated with promises. Although some people prefer prom-

ises and callbacks over plain callbacks due to the convenience of the promise

catch.all syntax, others feel promises aren’t worth the hassle (I’m in this camp),

especially considering that promises can bury errors and fail silently. Nevertheless,

promises are part of ES6/ES2015 and are here to stay. At the same time, new pat-

terns such as generators and async/await are emerging as part of the next evolution

of writing async code.4

Rest assured, you can do any asynchronous coding with plain callbacks. But most

modern (especially front-end) code uses (or will use) promises or async/await. For

this reason, this book uses promises with fetch() and axios.

For more information on the promise API, refer to the documentation at MDN

(http://mng.bz/7DcO) and my article “Top 10 ES6 Features Every Busy JavaScript

Developer Must Know” (https://webapplog.com/es6).

318 CHAPTER 15 Working with data using GraphQL

The function you pass as the argument to then returns into the context of the prom-

ise and not the context of your component’s method. You need to call an action cre-

ator to deliver new data into the store:

axios.get('/q').then(response => this.props.fetchMovie(response))

Now, let’s build a proper query against your GraphQL API. To do that, you can use a

multiline template string (notice that it uses backticks instead of single quotes):

axios.get(`/q?query={
movie(index:1) {
title,
cover

}
}`).then(response => this.props.fetchMovie(response))

Using a multiline template literal (the backticks) preserves line breaks, so the query

string will have new lines. Not good. New lines in a query string might break the API

endpoint URLs. For this reason, you need to remove unnecessary spaces and line

breaks in the HTTP calls but keep them in the source code. The clean-tagged-

string library (https://github.com/taxigy/clean-tagged-string) does only that: it

transforms a huge, multiline template string into a smaller, single-line string resulting

in this

clean`/q?query={
movie(index:1) {
title,
cover

}
}`

looking like this:

'/q?query={ movie(index:1) { title, cover } }'

Notice the syntax: there are no parentheses (round brackets) after clean, and it’s

attached to the template string. This is valid syntax and is called using tagged strings

(http://mng.bz/9CqH).

 Now, let’s get the first movie, with an index of 1:

const clean = require('clean-tagged-string').default

axios.get(clean`/q?query={
movie(index:1) {
title,
cover

}
}`).then(response => this.props.fetchMovie(response))

319Adding a server to the Netflix clone

Next, you need to implement code to get any movie based on its ID. You also want to request

more fields, not just title and cover, so you can display the view shown in figure 15.1.

It’s good to know that the single-movie page won’t be lost on reload, because you added

the special server code to sendFile() for * to catch all routes that send index.html.

 You can fetch the data for a single movie from the API in the lifecycle component

using your favorite promise-based HTTP agent, axios:

componentWillMount() {
const query = clean`{
movie(index:${id}) {

title,
cover,
year,
starring {

name
}

}
}`

axios.get(`/q?query=${query}`)
.then(response =>

this.props.fetchMovie(response)
)

}

The list of requested properties for a movie entity is a little longer: not just title and

cover, but also year and starring. Because starring is itself an array of objects, you

also need to declare which properties of those objects you want to request. In this

case, you only want name.

 The response from the API goes to the fetchMovie action creator. After that, the

store is updated with the movie the user wants to see.

Figure 15.1 Single-movie view server from Express server (port 3000) with browser history (no hash signs!)

320 CHAPTER 15 Working with data using GraphQL

 Connect it:

const {
fetchMovieActionCreator

} = require('modules/movies.js')
...
module.exports = connect(({movies}) => ({

movie: movies.current
}), {

fetchMovie: fetchMovieActionCreator
})(Movie)

And render it:

render() {
const {
movie = {

starring: []
}

} = this.props;
return (
<div>

<div>

<div>{movie.title}</div>
<div>{movie.year}</div>
{movie.starring.map((actor = {}, index) => (

<div key={index}>
{actor.name}

</div>
))}

</div>
<Link to="/movies">

?
</Link>

</div>
)

}

To better organize the code, let’s add a fetchMovie() method to the Movie component

that’s already familiar to you from chapter 14 (ch14/redux-netflix/src/components/

movie/movie.js). This new method will be used to make AJAX-y calls that will, in turn,

dispatch actions. The method is in the Movie component (ch15/redux-graphql-netflix/

client/components/movie/movie.js).

// ...
fetchMovie(id = this.props.params.id) {

const query = clean`{

Listing 15.4 fetchMovie() component class method

Uses a React Router
parameter from the
URL to set id

Forms the query
using id, the

template string,
and clean

321Adding a server to the Netflix clone

movie(index:${id}) {
title,
cover,
year,
starring {

name
}

}
}`

axios.get(`/q?query=${query}`)
.then(response => {
this.props.fetchMovie(response)

}
)

}
// ...

Next, let’s move on to getting the list of movies.

15.2.5 Showing the list of movies

When you show a list of movies, the query to the API is different, and it’s rendered in a

different way than when you fetch a single movie. You fetched the data from the

GraphQL server using a valid GraphQL query, via an asynchronous GET request per-

formed with the axios library, and you put this data into the store via an action. The

next thing to do is show this data to the user: time to render it.

 You already know that, to take data from the store, a component needs to be con-

nected: wrapped with a connect() function call that maps state and actions to proper-

ties. In the component’s render() function, you use component properties. But these

properties need values; that’s why you make AJAX/XHR calls, usually after the compo-

nent has been mounted for the first time (lifecycle events!).

 Let’s declare a component to pick the data from the store, take it from properties,

and render it. First, connect the component to the store (this snippet is from

ch15/redux-graphql-netflix/client/components/movies/movies.js):

const React = require('react')
const { connect } = require('react-redux')
const {

fetchMoviesActionCreator
} = require('modules/movies')

class Movies extends Component {
// ...

}

module.exports = connect(({movies}) => ({
movies: movies.all

}), {
fetchMovies: fetchMoviesActionCreator

})(Movies)

Makes the
request to /q

Dispatches the
action with the data
from the server

322 CHAPTER 15 Working with data using GraphQL

The connect() function takes two arguments: the first maps the store to component prop-

erties, and the second maps action creators to component properties. After that, the com-

ponent has two new properties: this.props.movies and this.props.fetchMovies().

 Next, let’s fetch those movies and, as the data is received, place it in the store via

the action creator (dispatch an action). Usually, data may be requested from a remote

API when the component starts its lifecycle (componentWillMount() or component-

DidMount()):

const {
fetchMoviesActionCreator

} = require('modules/movies.js')
...
class Movies extends React.Component {

componentWillMount() {
const query = clean`{

movies {
title,
cover

}
}`

axios.get(`/q?query=${query}`)
.then(response => {

this.props.fetchMovies(response)
}

)
}

// ...
}
module.exports = connect(({movies}) => ({

movies: movies.all
}), {

fetchMovies: fetchMoviesActionCreator
})(Movies)

Finally, render the Movies component using data from properties, which comes from

the Redux store:

// ...
render() {

const {
movies = []

} = this.props

return (
<div>

{movies.map((movie, index) => (
<Link

key={index}
to={`/movies/${index + 1}`}>

Imports an action creator

Dispatches an action to
update the store with the
response from the server

Lets you dispatch an
action provided by
the action creator

323Quiz

</Link>

))}
</div>

)
}
// ...

Every movie has cover and title properties. A link to a movie is basically a reference

to its position in the array of movies. This setup isn’t stable when you have thousands

of elements in a collection, because, well, the order is never guaranteed, but for now

it’s okay. (A better way would be to use a unique ID, which is typically autogenerated

by a database like MongoDB.)

 The component now renders the list of movies, although it lacks styles. Check out

this chapter’s source code to see how it works with styles and a three-level hierarchy of

components.

15.2.6 GraphQL wrap-up

Adding GraphQL support on a basic level is straightforward and transparent.

GraphQL works differently than a typical RESTful API: you can query any property, at

any nesting level, for any subset of entities the API provides. This makes GraphQL effi-

cient for datasets of complex objects, whereas a REST design usually requires multiple

requests to get the same data.

 GraphQL is a promising pattern for implementing server-client handshakes. It

allows for more control from the client, which can dictate the structure of the data to

the REST API. This inversion of control allows front-end developers to request only the

data they need and not have to modify back-end code (or ask a back-end team to do so).

15.3 Quiz

1 Which command creates a GraphQL schema? new graphql.GraphQLSchema(),

graphql.GraphQLSchema(), or graphql.getGraphQLSchema()

2 It’s okay to put API calls into reducers. True or false? (Hint: See a Tip in chap-

ter 14.)

3 Where do you make the GraphQL call to fetch a movie? componentDidUnmount(),

componentWillMount(), or componentDidMount()

4 You used this URL for GraphQL: `/q?query=${query}` . What does this syntax

refer to? Inline Markdown, comments, template literal, string template, or

string interpolation

5 GraphQLString is a special GraphQL schema type, and you can pull this class

from the graphql package. True or false?

324 CHAPTER 15 Working with data using GraphQL

15.4 Summary

 GraphQL is a robust, reliable way to provide data to the front end. It also elimi-

nates a lot of duplicate back-end code.

 To enable the browser history and hash-less URL with React Router, you can use

sendFile() in the * Express route to serve index.html.

 To use Express not just as a data provider/API but as a static web server, use

express.static with app.use().

 GraphQL’s URL structure is /q?query=... where query has the value of your

data query.

15.5 Quiz answers

1new graphql.GraphQLSchema()

2False. Avoid putting API calls in reducers. It’s better to put them in components

(container/smart components, to be specific).

3componentWillMount(), but componentDidMount() is also a good location.

componentDidUnmount() isn’t a valid method.

4Template literal, string template, and string interpolation are all valid names to

define the query with a variable.

5True. This is valid code: const {GraphQLString} = require('graphql'). See list-

ing 15.3.

325

Unit testing
 React with Jest

In modern software engineering, testing is important. It’s at least as important as

using Agile methods, writing well-documented code, and having enough coffee on

hand—sometimes even more so. Proper testing will save you from many hours of

debugging later. The code isn’t an asset, it’s a liability, so your goal is to make it as

easy to maintain as possible.

This chapter covers

 Reasons to use Jest

 Unit testing with Jest

 UI testing with Jest and TestUtils

Code is a liability?

Googling the phrase “Code isn’t an asset, it’s a liability” gives 191 million results,

which makes it hard to pinpoint its origins. Although I can’t find an author, I can tell

you the gist of the idea: when you write software, you’re building apps/products/

services that are assets, but your code is not one of them.

Watch this chapter’s introduction video by

scanning this QR code with your phone or going

to http://reactquickly.co/videos/ch16.

326 CHAPTER 16 Unit testing React with Jest

Using test-driven/behavior-driven development (TDD/BDD) can make maintenance

easier. It can also make your company more competitive by letting you iterate more

quickly and make you more productive by giving you the confidence that your code

works.

NOTE The source code for the examples in this chapter is at www.manning
.com/books/react-quickly and https://github.com/azat-co/react-quickly/
tree/master/ch16. You can also find some demos at http://
reactquickly.co/demos.

16.1 Types of testing

There are multiple types of testing. Most commonly, they can be separated into three

categories: unit, service, and UI testing, as shown in figure 16.1. Here’s an overview of

each category, from lowest to highest level:

 Unit testing—The system tests standalone methods and classes. There are no or

few dependencies or interconnected parts. The code for the tested subject

should be enough to verify that the method works as it should work. For exam-

ple, a module that generates random passwords can be tested by invoking a

method from a module and comparing the output against a regular-expression

pattern. This category also includes tests that may involve a few parts or mod-

ules working together to produce one piece of functionality. For example, sev-

eral components have to work together to provide the functionality for

password input with a strength check. They can be tested by supplying the value

to one component (input) and monitoring changes in the strength check (suf-

ficient or not). These tests are durable; according to industry best practices, this

category should make up roughly 70% of your tests (see figure 16.1) and

should definitely outnumber any other types of tests.

 Service (integration) testing—Tests typically involve other dependencies and

require a separate environment. Integration tests should be roughly 20% of all

(continued)

Assets are things that generate income. Code does not generate any income by

itself. Yes, code enables products, but the code is a tool to make the products (which

are assets). The code itself isn’t an asset—it’s more of a necessary evil to get to the

end goal of having a working application.

Thus, code is a liability, because you have to maintain it. More code does not auto-

matically translate into more revenue or better product quality; but more code almost

always increases complexity and the cost of maintenance. Some of the best ways to

minimize the cost of maintaining code are to make it simple, robust, and flexible for

future changes and enhancements. And testing—especially automated testing—

helps when you’re making changes, because you have more assurance that the

changes didn’t break your app.

327Why Jest (vs. Mocha or others)?

your tests. Once you have a solid foundation of unit tests and the assurance of

functional tests, you don’t want to have too many integration tests, because

maintaining them will slow development. Each time there’s a UI change, your

integration tests need to be updated. This often leads to flaky UI tests and no

integration testing at all, which is even worse.

 UI (acceptance)—Tests often mimic Agile user stories and/or involve testing the

entire system, which obviously has all the dependencies and complexities imag-

inable. UI tests are more fragile

and difficult (expensive) to

maintain, and thus they should

be only about 10% of your

overall tests.

This chapter covers unit testing of

React apps with a bit of UI testing of

React components, using the mock

DOM rendering of React and Jest.

You’ll also use the standard toolchain

of Node, npm, Babel, and Webpack.

To begin unit testing, let’s investigate

Jest.

16.2 Why Jest (vs. Mocha or others)?

Jest (https://facebook.github.io/jest) is a command-line tool based on Jasmine. It has

a Jasmine-like interface. If you’ve worked with Mocha, you’ll find that Jest looks simi-

lar to it and is easy to learn. Jest is developed by Facebook and is often used together

with React; the API documentation is at https://facebook.github.io/jest/docs/

api.html#content.

 Jest offers these features:

 Powerful mocking (https://facebook.github.io/jest/docs/mock-functions.html)

of JavaScript/Node modules makes it easier to isolate code in order to unit test it.

 Less setup is required to get started than with other test runners, such as

Mocha, where you need to import Chai or standalone Expect. Jest also finds

tests in the __tests__ folder.

 Tests can be sandboxed and executed in parallel to run them more quickly.1

 You can perform static analysis with the support of Facebook’s Flow

(https://flowtype.org), which is a static type checker for JS.

 Jest provides modularity, configurability, and adaptability (via the support of Jas-

mine assertions).

1 Christopher Poher, “JavaScript Unit Testing Performance,” Jest, March 11, 2016, http://mng.bz/YfXz.

UI

(10%)

Service

(20%)

Unit

(70%)

Number of tests

Tests increase in:

 • Fragility

 • Duration

 • Cost

 • Maintenance

Figure 16.1 Testing pyramid according to software

engineering’s best practices

328 CHAPTER 16 Unit testing React with Jest

There are many opinions about what test framework is better for what job. Most proj-

ects use Mocha, which has a lot of features. Jasmine arose from front-end develop-

ment but is interchangeable with Mocha and Jest. All of them use the same constructs

to define test suites and tests:2

 describe—Test suite

 it—Test case

 before—Preparation

 beforeEach—Preparation for every suite or case

 after—Cleanup

 afterEach—Cleanup for every suite or case

Without getting into a heated debate in this book about what framework is the best,

I encourage you to keep an open mind and explore Jest because of the features I’ve

listed and because it comes from the same community that develops React. This

way, you can make a better judgment about which framework to use for your next

React project.

 Most modern frameworks like Mocha, Jasmine, and Jest are similar for most tasks.

Any difference will depend on your preferred style (maybe you like automocking, or

maybe you don’t) and on the edge cases of your particular project (do you need all the

features Mocha provides, or you need something lightweight like the Test Anything

Protocol’s [TAP, https://testanything.org] node-tap [www.node-tap.org]?). Jest is a

good place to start, because once you learn how to use Jest with React utilities and

methods, you can use other test runners and testing frameworks such as Mocha,

Jasmine, and node-tap.

2 See Christoph Pojer, “Jest 15.0: New Defaults for Jest,” September 1, 2016, http://mng.bz/p20n.

Mocking, static analysis, and Jasmine

The term mocking means faking a certain part of a dependency so you can test the

current code. Automocking means mocking is done for you automatically. In Jest

before v15,2 every imported dependency is automocked, which can be useful if you

frequently rely on mocking. Most developers don’t need automocking, so in Jest v15+

it’s off by default—but automocking can be turned on if necessary.

Static analysis means the code can be analyzed before you run it, which typically

involves type checking. Flow is a library that adds type checking to otherwise type-

less (more or less) JavaScript.

Jasmine is a feature-rich testing framework that comes with an assertion language.

Jest extends and builds on Jasmine under the hood so you don’t need to import or

configure anything. Thus, you have the best of both worlds: you can tap into the com-

mon interface of Jasmine without needing extra dependencies or setup.

329Unit testing with Jest

16.3 Unit testing with Jest

If you’ve never worked with any of the testing frameworks I’ve been discussing, don’t

worry; Jest is straightforward to learn. The main statement is describe, which is a test

suite that acts as a wrapper for tests; and it, which is an individual test called a test case.

Test cases are nested within the test suite.

 Other constructs such as before, after, and their Each brethren beforeEach and

afterEach execute either before or after the test suite or test case. Adding Each exe-

cutes a piece of code many times as compared to just one time.

 Writing tests consists of creating test suites, cases, and assertions. Assertions are like

true or false questions, but in a nice readable format (BDD).

 Here’s an example, without assertions for now:

describe('Noun: method or a class/module name', () => {
before((done) => {
// This code will be called just once before all it statements
done()

})
beforeEach((done) => {
// This code will be called many times before all it statements
done()

})
it('Verb describing the behavior', (done) => {

// Assertions
done()

})
it('Verb describing the behavior', (done) => {

// Assertions
done()

})
...
after((done) => {
// This code will be called just once after all it statements
done()

})
afterEach((done) => {
// This code will be called many times after all it statements
done()

})
})

You must have at least one describe and one it, but their number isn’t limited. Every-

thing else, such as before and after, is optional.

 You won’t be testing any React components yet. Before you can work with React

components, you need to learn a little more about Jest by working on a Jest example

that doesn’t have a UI.

 In this section, you’ll create and unit-test a module that generates random pass-

words. Imagine you’re working on a sign-up page for a cool new chat app. You need

Defines the done() callback

Invokes done() when
the async test code is

finished

330 CHAPTER 16 Unit testing React with Jest

the ability to generate passwords, right? This module will automatically generate ran-

dom passwords. To keep things simple, the format will be eight alphanumeric charac-

ters. The project (module) structure is as follows:

/generate-password
/__test__
generate-password.test.js

/node_modules
generate-password.js
package.json

You’ll use the CommonJS/Node module syntax, which is widely supported in Node

(duh) and also in browser development via Browserify and Webpack. Here’s the mod-

ule in the ch16/generate-password.js file.

module.exports = () => {
return Math.random().toString(36).slice(-8)

}

Just as a refresher, in this file you export the function via the module.exports global.

This is Node.js and CommonJS notation. You can use it on the browser with extra tools

like Webpack and Browserify (http://browserify.org).

 The function uses Math.random() to generate a number and convert it to a string.

The string length is eight characters, as specified by slice(-8).

 To test the module, you can run this eval Node command from the terminal. It

imports the module, invokes its function, and prints the result:

node -e \"console.log(require('./generate-password.js')())\"

You could improve this module by making it work with different numbers of charac-

ters, not just eight.

16.3.1 Writing unit tests in Jest

To begin using Jest, you need to create a new project folder and npm init it to create

package.json. If you don’t have npm, this is the best time to install it; follow the

instructions in appendix B.

 Once you’ve created the package.json file in a new folder, install Jest:

$ npm install jest-cli@19.0.2 --save-dev --save-exact

I’m using jest-cli version 19.0.2; make sure your version is the same or compatible.

--save-dev adds the entry to the package.json file. Open the file, and manually

change the test entry to jest as shown next (ch16/jest/package.json). This will add

the testing command. Also add the start script.

Listing 16.1 Module for generating passwords

Uses slice with a negative number
to reverse the order (right to left)

331Unit testing with Jest

{
"name": "jest",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {
"test": "jest",
"start": "node -e

➥ \"console.log(require('./generate-password.js')())\""
},
"author": "Azat Mardan",
"license": "MIT",
"devDependencies": {
"jest-cli": "19.0.2"

}
}

Now, create a folder named __tests__. The name is important because Jest will pick up

tests from that folder. Then, create your first Jest test in __tests__/generate-password.js.

 Typically, you only mock dependencies that you don’t need to isolate the library

you’re currently unit testing. Jest prior to v15 automatically mocks every required file,

so you need to use dontMock() or jest.autoMockOff() to avoid this for the main

module you test (generate-password.js). This is one way to do it:

jest.dontMock('../generate-password.js')

Luckily, for the version of Jest used in this chapter (v19), you don’t need to disable auto-

mock, because it’s disabled by default. So, you can skip this dontMock() line of code or

leave it commented out.

 The test file has a single suite (only one describe), which expects the value to match

the /^[a-z0-9]{8}$/ regular-expression pattern—only alphanumerics and exactly

eight characters—to satisfy your condition for a strong password (ch16/generate-

password/__tests__/generate-password.test.js). You don’t want your chat users to be

hacked by brute force!

describe('method generatePassword', ()=>{
let password
generatePassword = require('../generate-password')
it('returns a generated password of lower-case characters

➥ and numbers with the length of 8', (done)=>{
password = generatePassword()
expect(password).toMatch(/^[a-z0-9]{8}$/)
done()

})
})

Listing 16.2 Saving a test CLI command

Listing 16.3 Test file for the password-generating module

Replaces the
default test
script with jest

Saves the Node eval
command to get a
random password

Uses 19.0.2 without ^
to ensure the exact
version of 19.0.2

Only for Jest prior to v15

Uses require, a
special Node.js
global that imports
the module into
your script.js file

Invokes done() if you defined an argument needed for asynchronous
tests and optional for synchronous (in this case, it’s sync)

332 CHAPTER 16 Unit testing React with Jest

You can run the test with $ npm test. You’ll see something like this as the terminal out-

put:

Using Jest CLI v13.2.3, jasmine2
PASS __tests__/generate-password.test.js (0.031s)

1 test passed (1 total in 1 test suite, run time 1.339s)

16.3.2 Jest assertions

By default, Jest uses BDD syntax (https://en.wikipedia.org/wiki/Behavior-driven

_development) powered by Expect syntax (https://facebook.github.io/jest/docs/

api.html). Expect is a popular language that’s a replacement for TDD assertions. It has

many flavors, and Jest uses a somewhat simplified version (in my opinion). Unlike

other frameworks, such as Mocha, where you need to install additional modules for

syntax support, in Jest it’s automatic.

Here’s a list of the main Expect methods that Jest supports (there are many more).

You pass the actual values—returned by the program—to expect() and use the fol-

lowing methods to compare those values with expected values that are hardcoded in

the tests:

 .not—Inverses the next comparison in the chain

 expect(OBJECT).toBe(value)—Expects the value to be equal with JavaScript’s

triple equal sign === (checks for value and type, not just value)3

3 See “Equality Comparisons and Sameness,” Mozilla Developer Network, http://mng.bz/kliO.

How many tests
passed and how
many you have
in total

TDD and BDD

TDD can mean test-driven development or TDD syntax with assertions. Briefly, during

test-driven development you write a test, then run it (failing), then make it work (pass-

ing), and then make it right (refactor).

You most certainly can perform test-driven development with BDD. The main benefit

of BDD style is that it’s intended for communicating with every member of a cross-

functional team, not just software engineers. TDD is more of a techie language. BDD

format makes it easier to read tests—ideally the spec title should tell you what you’re

testing, as in this example:

describe('method generatePassword', ()=>{
...
it('returns a generated password of lower-case characters

➥ and numbers with the length of 8', ()=>{
...
expect(password).toMatch(/^[a-z0-9]{8}$/)

})
})

Uses a noun to describe
the test suite

Uses verbs to
describe the
behavior for
a test case

Uses an expect statement
to implement a test case

333UI testing React with Jest and TestUtils

 expect(OBJECT).toEqual(value)—Expects the value to be deep-equal4

 expect(OBJECT).toBeFalsy()—Expects the value to be falsy (see the following

sidebar)

 expect(OBJECT).toBeTruthy()—Expects the value to be truthy

 expect(OBJECT).toBeNull()—Expects the value to be null

 expect(OBJECT).toBeUndefined()—Expects the value to be undefined

 expect(OBJECT).toBeDefined()—Expects the value to be defined

 expect(OBJECT).toMatch(regexp)—Expects the value to match the regular

expression

To summarize, Jest can be used for unit tests, which should be the most numerous of

your tests. They’re lower level, and for this reason they’re more solid and less brittle,

which makes them less costly to maintain.

 Thus far, you’ve created a module and tested its method with Jest. This is a typical

unit test. There are no dependencies involved—only the tested module itself. This

skill should prepare you to continue with testing React components. Next, let’s look at

more-complicated UI testing. The following section deals with the React testing utility,

which enables you to perform UI testing.

16.4 UI testing React with Jest and TestUtils

Generally speaking, in UI testing (recommended to make up only 10% of your tests),

you test entire components, their behavior, and even entire DOM trees. You can test

components manually, which is a terrible idea! Humans make mistakes and take a

long time to perform tests. Manual UI testing should be minimal or nonexistent.

4 Deep equality compares objects, including all their properties and values, to the last level of nestedness (going
deep). There’s no standard API for it in JavaScript, but there are implementations like Node’s core assert
module (http://mng.bz/rhoX) and deep-equal (www.npmjs.com/package/deep-equal).

Truthy and falsy

In JavaScript/Node, a truthy value translates to true when evaluated as a Boolean

in an if/else statement. A falsy value, on the other hand, evaluates to else in an

if/else.

The official definition is that a value is truthy if it’s not falsy, and there are only six

falsy values:

 false

 0

 "" (empty string)

 null

 undefined

 NaN (not a number)

Everything not listed here is truthy.

334 CHAPTER 16 Unit testing React with Jest

 What about automated UI testing? You can test automatically using headless browsers

(https://en.wikipedia.org/wiki/Headless_browser), which are like real browsers but

without a GUI. That’s how most Angular 1 apps are tested. It’s possible to use this

process with React, but it isn’t easy, it’s often slow, and it requires a lot of process-

ing power.

 Another automated UI testing approach uses React’s virtual DOM, which is accessi-

ble via a browser-like testing JavaScript environment implemented by jsdom

(https://github.com/tmpvar/jsdom). To use React’s virtual DOM, you’ll need a utility

that’s closely related to the React Core library but not part of it: TestUtils, which is a

React utility to test its components. Simply put, TestUtils allows you to create compo-

nents and render them into the fake DOM. Then you can poke around, looking at the

elements by tags or classes. It’s all done from the command line, without the need for

browsers (headless or not).

NOTE There are other React add-ons, listed at https://facebook.github.io/
react/docs/addons.html. Most of them are no longer in development or are
still in the experimental stage, which in practice means the React team may
change their interface or stop supporting them. All of them follow the
naming convention react-addons-NAME. TestUtils is an add-on, and, like
other React add-ons, it’s installed via npm. (You can’t use TestUtils without
npm; if you haven’t already, you can get npm by following the instructions in
appendix A.)

For versions of React before v15.5.4, TestUtils was in an npm package react-addons-

test-utils (https://facebook.github.io/react/docs/test-utils.html). For example, if

you’re using React version 15.2.1, you can install react-addons-test-utils v15.2.1

with npm using the following command:

$ npm install react-addons-test-utils@15.2.1 --save-dev --save-exact

And this goes in your test source code (React prior to v15.5.4):

const TestUtils = require('react-addons-test-utils')

In React v15.5.4, things are somewhat easier, because TestUtils is in ReactDOM

(react-dom on npm). You don’t have to install a separate package for this example,

because you’re using the newer v15.5.4:

const TestUtils = require('react-dom/test-utils')

TestUtils has a few primary methods for rendering components; simulating events such

as click, mouseOver, and so on; and finding elements in a rendered component. You’ll

begin by rendering a component and learn about other methods as you need them.

 To illustrate the TestUtils render() method, the following listing renders an ele-

ment into a div variable without using a headless (or real, for that matter) browser

(ch16/testutils/__tests__/render-props.js).

335UI testing React with Jest and TestUtils

describe('HelloWorld', ()=>{
const TestUtils = require('react-dom/test-utils')
const React = require('react')

it('has props', (done)=>{

class HelloWorld extends React.Component {
render() {

return <div>{this.props.children}</div>
}

}
let hello = TestUtils.renderIntoDocument(<HelloWorld>Hello Node!

➥ </HelloWorld>)
expect(hello.props).toBeDefined()
console.log('my hello props:', hello.props) // my div: Hello Node!

done()
})

})

And package.json for ch16/testutils example looks like this with Babel, Jest CLI, React,

and React DOM:

{
"name": "password",
"version": "2.0.0",
"description": "",
"main": "index.html",
"scripts": {
"test": "jest",
"test-watch": "jest --watch",
"build-watch": "./node_modules/.bin/webpack -w",
"build": "./node_modules/.bin/webpack"

},
"author": "Azat Mardan",
"license": "MIT",
"babel": {
"presets": [

"react"
]

},
"devDependencies": {
"babel-jest": "19.0.0",
"babel-preset-react": "6.24.1",
"jest-cli": "19.0.2",
"react": "15.5.4",
"react-dom": "15.5.4"

}
}

Listing 16.4 Rendering a React element in Jest

336 CHAPTER 16 Unit testing React with Jest

WARNING renderIntoDocument() only works on custom components, not
standard DOM components like <p>, <div>, <section>, and so on. So if you see
an error like Error: Invariant Violation: findAllInRenderedTree(...):
instance must be a composite component, make sure you’re rendering a
custom (your own) component class and not a standard class. See the commit
at http://mng.bz/8AOc and the https://github.com/facebook/react/
issues/4692 thread on GitHub for more information.

Once you have hello, which has the value of the React component tree (includes all

child components), you can look inside it with one of the find-element methods. For

example, you can get the <div> from within the <HelloWorld/> element, as shown

next (ch16/testutils/__tests__/scry-div.js).

describe('HelloWorld', ()=>{
const TestUtils = require('react-dom/test-utils')
const React = require('react')

it('has a div', (done)=>{

class HelloWorld extends React.Component {
render() {

return <div>{this.props.children}</div>
}

}
let hello = TestUtils.renderIntoDocument(

<HelloWorld>Hello Node!</HelloWorld>
)
expect(TestUtils.scryRenderedDOMComponentsWithTag(

hello, 'div'
).length).toBe(1)
console.log('found this many divs: ',

TestUtils.scryRenderedDOMComponentsWithTag(hello, 'div').length)

done()
})

})
...

scryRenderedDOMComponentsWithTag() allows you to get an array of elements by

their tag names (such as div). Are there any other ways to get elements? Yes!

16.4.1 Finding elements with TestUtils

In addition to scryRenderedDOMComponentsWithTag(), there are a few other ways to

get either a list of elements (prefixed with scry, plural Components) or a single ele-

ment (prefixed with find, singular Component). Both use an element class, not a com-

ponent class, which is a different thing. For example, btn, main, and so on.

 In addition to tag names, you can get elements by type (component class) or by

their CSS classes. For example, HelloWorld is a type, whereas div is a tag name (you

used it to pull the list of criteria).

Listing 16.5 Finding a React element’s child element <div>

337UI testing React with Jest and TestUtils

 You can mix and match scry and find with Class, Type, and Tag to get six meth-

ods, depending on your needs. Here’s what each method returns:

 scryRenderedDOMComponentsWithTag()—Many elements; you know their tag

name.

 findRenderedDOMComponentWithTag()—A single element; you know its unique

tag name. That is, no other elements in the component have a similar tag name.

 scryRenderedDOMComponentsWithClass()—Many elements; you know their

class name.

 findRenderedDOMComponentWithClass()—A single element; you know its

unique class name.

 scryRenderedComponentsWithType()—Many elements; you know their type.

 findRenderedComponentWithType()—A single element; you know its type.

As you can see, there’s no shortage of methods when it comes to pulling the necessary

element(s) from your components. If you need some guidance, I suggest using classes

or types (component classes), because they let you target elements more robustly. For

instance, suppose you use tag names now because there’s just one <div>. If you decide

to add elements with the same tag names to your code (more than one <div>), you’ll

need to rewrite your test. If you use an HTML class to test a <div>, your test will work

fine after you add more <div> element to the tested component.

 The only case when using tag names might be appropriate is when you need to test

all the elements with a specific tag name (scryRenderedDOMComponentsWithTag()) or

your component is so small that there are no other elements with the same tag name

(findRenderedDOMComponentWithTag()). For example, if you have a stateless compo-

nent that wraps an anchor tag <a> and you add a few HTML classes to it, there will be

no additional anchor tags.

16.4.2 UI-testing the password widget

Consider a UI widget that can be used on a sign-up page to automatically generate

passwords of a certain strength. As shown in figure 16.2, it has an input field, a Gener-

ate button, and a list of criteria.

 The following section walks through the entire project. For now, we’re focusing on

using TestUtils and its interface. Once TestUtils and other dependencies (such as Jest)

are installed, you can create the Jest test file to UI-test your widget; let’s call it

password/__tests__/password.test.js, because you’re testing a password component.

The structure of this test is as follows:

describe('Password', function() {
it('changes after clicking the Generate button', (done)=>{
// Importations
// Perform rendering
// Perform assertions on content and behavior
done()

})
})

338 CHAPTER 16 Unit testing React with Jest

Let’s define the dependencies in describe. Note that I’ve created the shortcut fD for

ReactDOM.findDOMNode() because you’ll use it a lot:

const TestUtils = require('react-dom/test-utils')
const React = require('react')
const ReactDOM = require('react-dom')
const Password = require('../jsx/password.jsx')
const fD = ReactDOM.findDOMNode

To render a component, you need to use renderIntoDocument(). For example, this is

how you can render a Password component and save a reference to the object in the

password variable. The properties you’re passing will be the keys of the rules for the

password strength. For example, upperCase requires at least one uppercase character:

let password = TestUtils.renderIntoDocument(<Password
upperCase={true}
lowerCase={true}
special={true}
number={true}
over6={true}
/>

)

Figure 16.2 Password widget that autogenerates a password according to the given strength criteria

339UI testing React with Jest and TestUtils

This example is in JSX because Jest automatically uses babel-jest when you have

installed this module (npm i babel-jest --save-dev) and sets the Babel configura-

tion to use "presets": ["react"]. You cannot use JSX in Jest if you don’t want to

include babel-jest. In this case, call createElement():

let password = TestUtils.renderIntoDocument(
React.createElement(Password, {

upperCase: true,
lowerCase: true,
special: true,
number: true,
over6: true

})
)

Once you’ve rendered the component with renderIntoDocument(), it’s straightfor-

ward to extract the needed elements—children of Password—and execute assertions

to see how your widget is working. Think of the extraction calls as your jQuery; you

can use tags or classes. At the bare minimum, your test should check for these things:

1 There’s a Password element with a list of items () that are the strength criteria.

2 The first item in the strength list has specific text.

3 The second item isn’t fulfilled (strikethrough).

4 There’s a Generate button (class generate-btn)—click it!

5 After you click Generate, the second list item become fulfilled (visible).

Clicking Generate fulfills all criteria and makes the password visible (so users can

memorize it), but you won’t see the test code for that feature in this book. That’s your

homework for next week.

 Let’s start with item 1. TestUtils.scryRenderedDOMComponentsWithTag() gets all

elements from a particular class. In this case, the class is li for the elements

because that’s what the criteria list will use: . toBe(), which works like the tri-

ple equal (===), can be used to validate the list length as 5:

let rules = TestUtils.scryRenderedDOMComponentsWithTag(password, 'li')
expect(rules.length).toBe(5)

For item 2, which checks that the first list item has specific text, you use toEqual().

You expect the first item to say that an uppercase character is required. This will be

one of the rules for password strength:

expect(fD(rules[0]).textContent).toEqual('Must have

➥ at least one uppercase character')

To check items 3, 4, and 5, you find a button, click it, and compare the values of the

second criteria (it must change from text to strikethrough).

340 CHAPTER 16 Unit testing React with Jest

There’s a TestUtils.findRenderedDOMComponentWithClass() method that’s similar

to TestUtils.scryRenderedDOMComponentsWithTag() but returns only one element;

it’ll throw an error if you have more than one element. And to simulate user actions,

there’s a TestUtils.Simulate object that has methods with the names of events in

camelCase: for example, Simulate.click, Simulate.keyDown, and Simulate.change.

 Let’s use findRenderedDOMComponentWithClass() to get the button and then use

Simulate.click to click it. All this is done in the code without a browser:

let generateButton =

➥ TestUtils.findRenderedDOMComponentWithClass(password, 'generate-btn')
expect(fD(rules[1]).firstChild.nodeName.toLowerCase()).toBe('#text')
TestUtils.Simulate.click(fD(generateButton))
expect(fD(rules[1]).firstChild.nodeName.toLowerCase()).toBe('strike')

This test checks that the component has a <strike> element (to make the text

strikethrough) when the button is clicked. The button generates a random password

toBe() vs. toEqual()

toBe() and toEqual() aren’t the same in Jest. They behave differently. The easiest

way to remember is that toBe() is === (strict equal), whereas toEqual() checks

that two objects have the same value. Thus both assertions will be correct:

const copy1 = {
name: 'React Quickly',
chapters: 19,

}
const copy2 = {

name: 'React Quickly',
chapters: 19,

}

describe('Two copies of my books', () => {
it('have all the same properties', () => {
expect(copy1).toEqual(copy2) // correct

})
it('are not the same object', () => {
expect(copy1).not.toBe(copy2) // correct

})
})

But when you’re comparing literals such as the number 5 and the string “Must have at

least one uppercase character,” toBe() and toEqual() will produce the same results:

expect(rules.length).toBe(5) // correct
expect(rules.length).toEqual(5) // correct
expect(fD(rules[0]).textContent).toEqual('Must have

➥ at least one upper-case character') // correct
expect(fD(rules[0]).textContent).toBe('Must have

➥ at least one upper-case character') // correct

341UI testing React with Jest and TestUtils

that satisfies the second (rules[1]) criterion (as well as others), which is to have at

least one lowercase character. You’re finished here; let’s move on to the next tests.

 You’ve seen TestUtils.Simulate in action. It can trigger not just clicks, but other

interactions as well, such as a change of value in an input field or an Enter keystroke

(keyCode 13):

ReactTestUtils.Simulate.change(node)
ReactTestUtils.Simulate.keyDown(node, {

key: "Enter",
keyCode: 13,
which: 13})

NOTE You must manually pass data that will be used in the component, such
as key or keyCode, because TestUtils won’t autogenerate it. There are meth-
ods in TestUtils for every user action supported by React.

For your reference, following is the project manifest file, package.json. It also includes

the shallow-rendering library we’ll cover next. To run the examples from ch16/

password, install dependencies with npm i and then execute npm test:

{
"name": "password",
"version": "2.0.0",
"description": "",
"main": "index.html",
"scripts": {
"test": "jest",
"test-watch": "jest --watch",
"build-watch": "./node_modules/.bin/webpack -w",
"build": "./node_modules/.bin/webpack"

},
"author": "Azat Mardan",
"license": "MIT",
"babel": {
"presets": [

"react"
]

},
"devDependencies": {
"babel-core": "6.10.4",
"babel-jest": "13.2.2",
"babel-loader": "6.4.1",
"babel-preset-react": "6.5.0",
"jest-cli": "19.0.2",
"react": "15.5.4",
"react-dom": "15.5.4",
"react-test-renderer": "15.5.4",
"webpack": "2.4.1"

}
}

Next, let’s look at another way to render React elements.

342 CHAPTER 16 Unit testing React with Jest

16.4.3 Shallow rendering

In some cases, you may want to test a single level of rendering: that is, the result of

render() in a component without rendering its children (if any). This simplifies testing

because it doesn’t require having a DOM—the system creates an element, and you can

assert facts about it. First, you must have a package called react-test-renderer v15.5.4

(for older versions of React, this class was part of TestUtils, but it’s not as of v15.5.4):

npm i react-test-renderer -SE

To illustrate, here’s the same password element being tested with the shallow-rendering

approach. This code can go in the same test file ch16/password/__tests__/password

.test.js. In this case, you create a renderer and then pass a component to it to get its

shallow rendering:

const { createRenderer } = require('react-test-renderer/shallow')
const passwordRenderer = createRenderer()
passwordRenderer.render(<Password/>)
let p = passwordRenderer.getRenderOutput()
expect(p.type).toBe('div')
expect(p.props.children.length).toBe(6)

Now, if you log p as in console.log(p), the result contains the children but object p

isn’t a React instance. Look at this result of shallow rendering:

{ '$$typeof': Symbol(react.element),
type: 'div',
key: null,
ref: null,
props:
{ className: 'well form-group col-md-6',
children: [[Object], [Object], [Object], [Object],
[Object], [Object]] },

_owner: null,
_store: {} }

Contrast that with the logs of the results of renderIntoDocument(<Password/>),

which produces an instance of the Password React element with state. Look at this full

rendering (not shallow):

Password {
props: {},
context: {},
refs: {},
updater:
{...
},

state: { strength: {}, password: '',
visible: false, ok: false },

Performs shallow
rendering

Performs assert on the results
of shallow rendering

You get state, which
you don’t get with
shallow rendering.

343TestUtils wrap-up

generate: [Function: bound generate],
checkStrength: [Function: bound checkStrength],
toggleVisibility: [Function: bound toggleVisibility],
_reactInternalInstance:
{ _currentElement:

{ '$$typeof': Symbol(react.element),
type: [Function: Password],
key: null,
ref: null,
props: {},
_owner: null,
_store: {} },
...

}
}

Needless to say, you can’t test user behavior and nested elements with shallow render-

ing. But shallow rendering can be used to test the first level of children in a compo-

nent as well as the component’s type. You can use this feature for custom

(composable) component classes.

 In the real world, you’d use shallow rendering for highly targeted (almost unit-like)

testing of a single component and its rendering. You can use it when there’s no need to

test children, user behavior, or changing states of a component—in other words, when

you only need to test the render() function of a single element. As a rule of thumb, start

with shallow rendering and then, if that’s not enough, continue with regular rendering.

 Standard HTML classes can inspect and assert el.props, so there’s no need for a

shallow renderer. For example, this is how you can create an anchor element and test

that it has the expected class name and tag name:

let el =
expect(el.props.className).toBe('btn')
expect(el.type).toBe('a')

16.5 TestUtils wrap-up

You’ve learned a lot about TestUtils and Jest—enough to begin using them in your

projects. That’s exactly what you’ll be doing in the projects in part 2 of this book:

using Jest and TestUtils for behavior-driven development (BDD) of React components.

(chapters 18–20). The password widget is in chapter 19, if you want to look at the

Webpack setup and all the dependencies used in the real world.

 For more information on TestUtils, refer to the official documentation at

https://facebook.github.io/react/docs/test-utils.html. Jest is an extensive topic, and

full coverage is outside the scope of this book. Feel free to consult the official API doc-

umentation to learn more: https://facebook.github.io/jest/docs/api.html#content.

 Finally, the Enzyme library (https://github.com/airbnb/enzyme, http://mng.bz/

Uy4H) provides a few more features and methods than TestUtils as well as more-

compact names for methods. It’s developed by AirBnb and requires TestUtils as well as

jsdom (which comes with Jest, so you’ll need jsdom only if you’re not using Jest).

You get an element that
looks like the result of
shallow rendering.

344 CHAPTER 16 Unit testing React with Jest

 Testing is a beast. It’s so frightful that some developers skip it—but not you. You stuck

it out to the end. Congratulations! Your code will be better quality, and you’ll develop

more quickly and live a happier life. You won’t have to wake up in the middle of the night

to fix a broken server—or at least, not as frequently as someone without tests.

16.6 Quiz

1 Jest tests must be in a folder named which of the following? tests, __test__, or

__tests__

2 TestUtils is installed with npm from react-addons-test-utils. True or false?

3 What TestUtils method allows you to find a single component by its HTML class?

4 What is the expect expression to compare objects (deep comparison)?

5 How do you test the behavior when the user hovers with a mouse? TestUtils

.Simulate.mouseOver(node), TestUtils.Simulate.onMouseOver(node), or

TestUtils.Simulate.mouseDown(node)

16.7 Summary

 To install Jest, use npm i jest-cli --save-dev.

 To test a module, turn off automocking for it with jest.dontMock().

 Use expect.toBe() and other Expect functions.

 To install TestUtils, use npm i react-addons-test-utils --save-dev.

 Use TestUtils.Simulate.eventName(node), where eventName is a React event

(without the on prefix) to test trigger DOM events.

 Use scry... methods to fetch multiple elements.

 Use find... methods to fetch a single element (you’ll get an error if you have

more than one element: Did not find exactly one match (found: 2+)).

16.8 Quiz answers

1__tests__. This is the convention Jest follows.

2True. TestUtils is a separate npm module.

3findRenderedDOMComponentWithClass()

4expect(OBJECT).toEqual(value) compares objects on sameness without compar-

ing that they’re the same objects (which is done with === or toBe()).

5TestUtils.Simulate.mouseOver(node). The mouseOver event is triggered by hov-

ering the cursor.

345

React on Node and
 Universal JavaScript

React is primarily a front-end library to build full-blown, single-page applications or

simple UIs on the browser. So why should we concern ourselves with using it on the

server? Isn’t rendering HTML on the server the old way to do things? Well, yes and

no. It turns out that when you build web apps that always render on the browser,

they miss out on a few key goodies. In fact, they miss out to the point of not being

able to rank high in Google search results and maybe even losing millions of dol-

lars in revenue. Arghhh.

 Read on to find out why. You can skip this chapter in only one case: if you’re obliv-

ious to the performance of your apps (that is, if you’re a newbie developer). All oth-

ers, please proceed. You’ll gain precious knowledge that you can use to build amazing

This chapter covers

 Using React on the server

 Understanding Universal JavaScript

 Using React on Node

 Working with React and Express

 Using Universal JavaScript with Express and React

Watch this chapter’s introduction video by

scanning this QR code with your phone or going

to http://reactquickly.co/videos/ch17.

346 CHAPTER 17 React on Node and Universal JavaScript

apps and that will make you look smart during developers’ happy hour when you use the

term Universal JavaScript. You’ll also learn how to use React with Node and build Node

servers, and by the end of the chapter you’ll understand how to build Universal

JavaScript apps with React.js and Express.js (the most popular Node.js framework).

TIP If you haven’t come across Express before, check out my book Pro
Express.js (Apress, 2014), which covers the current v4; it’s comprehensive and
still very relevant. See also Express in Action, by Evan Hahn (Manning, 2015).
You can also check out my online course Express Foundation: https://
node.university/p/express-foundation. If you’re familiar with Express but
need a refresher, you can find an Express.js cheatsheet in appendix C, and
Express installation is covered in appendix A.

NOTE The source code for the examples in this chapter is at www.manning
.com/books/react-quickly and https://github.com/azat-co/react-quickly/
tree/master/ch17. You can also find some demos at http://
reactquickly.co/demos.

17.1 Why React on the server? And what is Universal JavaScript?

You may have heard about Universal JavaScript in relation to web development. It’s

become such a buzzword that it seems as though every web tech conference in 2016

had not one but several presentations about it. There are even a few synonyms for

Universal JavaScript, such as isomorphic JavaScript and full stack JavaScript. For simplicity,

I’ll stick with Universal for this chapter. This section will help you understand what

isomorphic/Universal JavaScript is about.

 But before I define Universal JavaScript, let’s discuss some of the issues you face

when building SPAs. The three main problems are these:

 No search engine optimization (SEO)—Single-page apps (SPAs) generate HTML

entirely on the browser, and search crawlers don’t like that.

 Poor performance—Huge bundled files and AJAX calls slow performance (espe-

cially on the first page load, when it’s critical).

 Poor maintainability—Often, SPAs lead to duplication of code on the browser

and server.

Let’s take a closer look at each of these problems.

17.1.1 Proper page indexing

SPAs built with frameworks like Backbone.js, Angular.js, Ember.js, and others are

widely used for protected apps—that is, apps that require the user to enter a user-

name and password in order to gain access (for example, see figure 17.1). Most SPAs

serve protected resources and don’t need indexing, but the vast majority of websites

aren’t protected behind logins.

347Why React on the server? And what is Universal JavaScript?

For such public apps, SEO is important and mandatory, because their business

depends heavily on search indexing and organic traffic. The majority of websites fall

in this category.

 Unfortunately, when you try to use SPA architecture for public-facing websites, which

should have good search engine indexing, it’s not straightforward. SPAs rely on browser

rendering, so you need to either reimplement the templates on the server or pre-

generate static HTML pages using headless browsers just for the search engine crawlers.

With Universal JavaScript and React, in particular, you can generate HTML on the

server for crawlers from the same components that browsers use to generate HTML for

users. No need for bulky headless browsers to generate HTML on the server. Win-win!

Figure 17.1 SPA that doesn’t need SEO support because it’s behind a login screen

Google support for browser rendering

Recently, Google added a JavaScript rendering capability to its crawlers. You may

think this means that browser-rendered HTML will be indexed correctly now. You may

think that by using Angular with a REST API server, you don’t need server-side render-

ing. Unfortunately, this may not be the case.

The following comes from the Google Webmaster Central Blog post “Understanding

Web Pages Better” (http://mng.bz/Yv3B): “Sometimes things don’t go perfectly dur-

ing rendering, which may negatively impact search results for your site.” The gist is

that Google doesn’t advocate that we rely on its indexing of SPAs. Google can’t guar-

antee that what’s in its cache, index, and search results is exactly what your SPA ren-

dered. So, to be on the safe side, you need to render without JavaScript as closely

as possible to the JavaScript-enabled rendering.

348 CHAPTER 17 React on Node and Universal JavaScript

17.1.2 Better performance with faster loading times

Although some applications must have proper search engine indexing, others thrive

on faster performance. Websites like http://mobile.walmart.com1 and http://twitter

.com2 have done research that showed that they needed to render the first page (first

load) on the server to improve performance. Companies lose millions of dollars

because users will leave if the first page doesn’t load quickly enough.

 Being a web developer, and working and living with good internet connection

speeds, you might forget that your website may be accessed via a slow connection.

What loads in a split second for you might take half a minute in other cases. Suddenly,

a bundle that’s more than 1 MB is too large. And loading the bundled file is just half

the story: the SPA needs to make AJAX requests to the server to load the data, while

your users patiently stare at the Loading… spinner. Yeah, right. Some of them already

left, and others are frustrated.

 You want to show users a functional web page as fast as you possibly can, not just

some skeleton HTML and Loading…. Other code can be loaded later while the user

browses the web page.

 With Universal JavaScript, it’s easy to generate HTML to show the first page on the

server. As a result, when users load the first page, they won’t see the obstructing Load-

ing… message. The data is in the HTML for users to enjoy. They see a functional page

and thus have a better user experience.

 The performance boost comes from the fact that users don’t have to wait for AJAX

calls to resolve. There are other opportunities to optimize performance as well, such

as preloading data and caching it on the server before AJAX calls come to the server

(that’s exactly what we did at DocuSign by implementing a data router).3

17.1.3 Better code maintainability

Code is a liability. The more code you have, the more you and your team will need to

support it. For these reasons, you want to avoid having different templates and logic

for the same pages. Avoid duplication. Don’t repeat yourself (DRY).

 Fortunately, Node.js, which is an essential part of Universal JavaScript, makes it

effortless to use front-end/browser modules on the server. Many template engines,

such as Handlebars.js, Mustache, Dust.js, and others, can be used on the server.

 Given these problems, and knowing that Universal JavaScript can solve them,

what’s a practical application?

17.1.4 Universal JavaScript with React and Node

Universal, in regard to web development, means using the same code (typically written

in JavaScript) on both the server side and the client side. A narrow use case for Universal

1 Kevin Decker, “Mobile Server Side Rendering,” GitHub Gist, 2014, http://mng.bz/2B6P.
2 Dan Webb, “Improving Performance on twitter.com,” Twitter, May 29, 2012, http://mng.bz/2st9.
3 Ben Buckman, “The New DocuSign Experience, All in Javascript,” DocuSign Dev, March 30, 2014,

http://mng.bz/4773.

349Why React on the server? And what is Universal JavaScript?

JavaScript is rendering on the server and client from the same source. Universal

JavaScript often implies the use of JavaScript and Node.js, because this language and

platform combination allows for the reuse of the libraries.

 Browser JavaScript code can be run in the Node.js environment with few modifica-

tions. As a consequence of this interchangeability, the Node.js and JavaScript ecosys-

tem has a wide variety of isomorphic frameworks, such as React.js (http://

facebook.github.io/react), Next.js (https://github.com/zeit/next.js), Catberry

(http://catberry.org/), LazoJS (https://github.com/lazojs/lazo), Rendr (https://

github.com/rendrjs/rendr), Meteor (https://meteor.com), and others. Figure 17.2

shows how an universal/isomorphic stack works: isomorphic code is shared between

server and client.

Rendering

(events,

XHR)

Server: REST API

Browser: SPA

User

Services

Traditional SPA

Universal:

• Views

• Routing

• Data store

• Data models

• Utilities

User

Services

Universal

Server

Browser

Rendering

Rendering

Figure 17.2 Universal

HTML generation and

code sharing between

browser and server vs.

no code sharing in a

traditional SPA

350 CHAPTER 17 React on Node and Universal JavaScript

In a practical application, Universal JavaScript architecture consists of the following:

 Client-side React code for the browser. This can be an SPA or just some simple

UIs making AJAX requests.

 A Node.js server generating HTML for the first page on the server and serving

browser React code with the same data. This can be implemented using Express

and either a template engine or React components as a template engine.

 Webpack to compile JSX for both the server and the browser.

Figure 17.3 shows the model.

You may be thinking, “Show me how to use this wonder, Universal JavaScript, already!”

All right, let’s look at a hands-on example of rendering React components on the

server. We’ll do so in a gradual way, because several components (as in parts, not React

components) are involved in using the Universal JavaScript pattern. You’ll need to

learn how to do these things:

 Generate HTML from React components—You have just React components as input

and plain HTML as output: no HTTP(S) servers yet.

 Render HTML code generated from React components in Express servers—Similar to

the previous item, but now you use React in a template engine for 100% server-

side rendering (no browser React yet).

Server

Data

Browser

First page load: Full HTML
markup with data and
browser React code

Subsequent requests
from browser JS: Data
only (JSON)

React JSX transpiled
to JS with Webpack
and Babel

1. Generate HTML from React

 components and data

2. Render HTML in server-side

 template engine

3. Serve static assets

React components in JS

React components in JSX

Figure 17.3 Practical application of Universal JavaScript with React, Node, and Express

351React on Node

 Implement and serve React browser files via Express—Eventually, you’ll need an

HTTP(S) server, and Express is one of the options. Until now, you’ve used node-

static or Webpack Dev Server. At this point, there’s no server-side HTML genera-

tion, just serving built/compiled static assets.

In the end, you’ll use React to generate server-side HTML while loading browser React

at the same time—the Holy Grail of Universal JavaScript. But before you can fly, you

need to learn to walk!

17.2 React on Node

Let’s start with a basic use case: generating HTML from a Node script. This example

doesn’t include servers or anything complex, just importing components and generat-

ing HTML. Make sure your Node version is at least 6 and your npm version is at least 3.

 You need to learn only a handful of methods to generate HTML from React com-

ponents on the server. First, you need the npm modules react and react-dom. You

can install React and npm following the instructions in appendix A. This example

uses React and React DOM version 15.

 If you’re new to writing server-side Node code, you might wonder where this

server-side code goes. It goes in a plain text file; name it index.js. The React compo-

nent is in email.js (I’ll cover non-JSX plain JavaScript for now). Those two files must be

in the same folder (ch17/node).

 The project structure looks like this:

/node
/node_modules
email.js
email.jsx
index.js
package.json

First, include the modules in your server-side code in node/index.js.

const ReactDOMServer = require('react-dom/server')
const React = require('react')
const Email = React.createFactory(require('./email.js'))
...

What’s up with createFactory()? Well, if you just imported email.js, that would be a

component class; but you need a React element. Thus you can use JSX: create-

Element() or createFactory(). The latter gives a function that, when invoked, will

give you an element.

Listing 17.1 Server-side setup code

Dependencies

Email component
Node
code

Imports the
ReactDOMServer class

Creates a function that
returns elements of the
Email class

352 CHAPTER 17 React on Node and Universal JavaScript

 Once you’ve imported your components, run renderToString() from ReactDOM-

Server:

const emailString = ReactDOMServer.renderToString(Email())

Here’s the code fragment from index.js:

const ReactDOMServer = require('react-dom/server')
const React = require('react')
const Email = React.createFactory(require('./email.js'))

const emailString = ReactDOMServer.renderToString(Email())
console.log(emailString)
// ...

Is email.js regular JavaScript? In this case, it has to be. You can “build” JSX into regular

JS with Webpack.

const React = require('react')

const Email = (props)=> {
return (
<div>

<h1>Thank you {(props.name) ? props.name: '' }
for signing up!</h1>

<p>If you have any questions, please contact support</p>
</div>

)
}

module.exports = Email

You’ll get strings rendered by React components. You can use these strings in your

favorite template engine to show on a web page or somewhere else (such as HTML

Listing 17.2 Server-side Email (node/email.jsx)

Importing JSX

Another approach to use JSX is to convert it on the fly. The babel-register library

will enhance require to do just that so you can configure your require once and

then import JSX like any other JS files.

To import JSX, you can use babel-register as shown here in its index.js, in addition

to installing babel-register and babel-preset-react (use npm to install them):

require('babel-register')({
presets: ['react']

})

353React on Node

email). In my case, email.js (ch17/node/email.js) with a heading and a paragraph

renders into the following HTML strings with Universal React attributes.

<div data-reactroot="" data-reactid="1" data-react-checksum="1319067066">
<h1 data-reactid="2">
<!-- react-text: 3 -->Thank you <!-- /react-text -->
<!-- react-text: 4 -->
<!-- /react-text -->
<!-- react-text: 5 -->for signing up!<!-- /react-text -->

</h1>
<p data-reactid="6">If you have any questions, please contact support</p>

</div>

What’s happening with the attributes data-reactroot, data-reactid, and data-

react-checksum? You didn’t put them in there; React did. Why? For browser React

and Universal JavaScript (discussed in the next section).

 If you won’t need the React markup that browser React needs (for example, if you’re

creating an HTML email), use the ReactDOMServer.renderToStaticMarkup() method.

It works similarly to renderToString() but strips out all the data-reactroot, data-

reactid, and data-react-checksum attributes. In this case, React is just like any other

static template engine.

 For example, you can load the component from email.js and generate HTML with

renderToStaticMarkup() instead of renderToString():

const emailStaticMarkup = ReactDOMServer.renderToStaticMarkup(Email())

The resulting emailStaticMarkup doesn’t have React attributes:

<div><h1>Thank you for signing up!</h1><p>If you have any questions,

➥ please contact support</p></div>

Although you won’t need the browser React for email, you use the original renderTo-

String() for the Universal JavaScript architecture with React. Server-side React adds

some secret sauce to the HTML in the form of checksums (data-react-checksum

HTML attributes). Those checksums are compared by the browser React, and if they

match, browser components won’t regenerate/repaint/rerender unnecessarily.

There’s no flash of content (which often happens due to rerendering). The check-

sums will match if the data supplied to the server-side components is exactly the same

as that on the browser. But how do you supply the data to the components created on

the server? As properties!

 If you need to pass some properties, pass them as object parameters. For example,

you can provide a name (Johny Pineappleseed) to the Email component:

const emailStringWithName = ReactDOMServer.renderToString(Email({
name: 'Johny Pineappleseed'

}))

Listing 17.3 node/email.jsx rendered into strings

354 CHAPTER 17 React on Node and Universal JavaScript

The full ch17/node/index.js is shown next, with three ways to render HTML—static,

string, and string with a property:

const ReactDOMServer = require('react-dom/server')
const React = require('react')
const Email = React.createFactory(require('./email.js'))

const emailString = ReactDOMServer.renderToString(Email())
const emailStaticMarkup = ReactDOMServer.renderToStaticMarkup(Email())
console.log(emailString)
console.log(emailStaticMarkup)

const emailStringWithName =

➥ ReactDOMServer.renderToString(Email({name: 'Johny Pineappleseed'}))
console.log(emailStringWithName)

That’s how you render React components into HTML in plain Node—no servers and

no thrills. Next, let’s look at using React in an Express server.

17.3 React and Express: rendering on the server side from components

Express.js is one of the most popular Node.js frameworks—maybe the most popular.

It’s simple yet highly configurable. There are hundreds of plug-ins called middleware

that you can use with Express.js.

 In a bird’s-eye view of the tech stack, Express and Node take the place of an

HTTP(S) server, effectively replacing technologies like Microsoft IIS (www.iis.net)

Apache httpd (https://httpd.apache.org), nginx (www.nginx.com), and Apache Tom-

cat (http://tomcat.apache.org). What’s unique about Express and Node is that they

allow you to build highly scalable, performant systems, thanks to the non-blocking I/O

nature of Node (http://github.com/azat-co/you-dont-know-node). Express’s advan-

tages are its vast ecosystem of middleware and its mature, stable codebase.

 Unfortunately, a detailed overview of the framework is out of the scope of this

book, but you’ll create a small Express app and render React in it. In no way is this is a

deep dive into Express.js, but it’ll get you started with the most widely used Node.js

web framework. Call it an express course in Express if you wish.

TIP As mentioned earlier, appendix A covers how to install both node.js and
Express, if you want to follow along with this example.

17.3.1 Rendering simple text on the server side

Let’s build HTTP and HTTPS servers using Express and then generate HTML on the

server side using React, as shown schematically in figure 17.4. The most basic example

of using React in Express as a view engine is to generate an HTML string without

markup (checksums) and send it as a response to the request. Listing 17.4 illustrates

the /about page rendered from a React component about.js.

355React and Express: rendering on the server side from components

const express = require('express')
const app = express()
const http = require('http')

const ReactDOMServer = require('react-dom/server')
const React = require('react')
const About =

React.createFactory(require('./components/about.js'))

app.get('/about', (req, res, next) => {
const aboutHTML = ReactDOMServer.renderToStaticMarkup(About())
response.send(aboutHTML)

})

http.createServer(app)
.listen(3000)

This will work, but /about won’t be a complete page with <head> and <body>. It’s bet-

ter to use a proper template engine (like Handlebars) for the layout and top HTML

elements. You also may wonder what app.get() and app.listen() are. Let’s look at

another example, and all will be revealed.

17.3.2 Rendering an HTML page

This is a more interesting example in which you’ll use some external plug-ins and a

template engine. The idea for the app is the same: serve HTML generated from React

using Express. The page will display some text that’s generated from about.jsx (see fig-

ure 17.5). No thrills, but it’s simple, and starting with simple is good.

 Create a folder called react-express. (This example is in ch17/react-express.) The

end project structure is as follows:

/react-express
/components
about.jsx

/views
about.hbs

index.js
package.json

Listing 17.4 Using React on Express to show HTML on a page

Browser

HTML

Express/Node

server

React

components

Figure 17.4 The Express/Node server will generate HTML and send it to the browser.

Imports the
express library

Imports the About
component and
creates a React object

Sends an HTML string back
to the client in response to
an /about request

Instantiates the HTTP
server and boots it up

356 CHAPTER 17 React on Node and Universal JavaScript

Create package.json with npm init -y, and then install Express with npm like this:

$ npm install express@4.14.0 --save

As with any Node application, open an editor and create a file. Typically, you create a

server file named index.js, app.js, or server.js, which you’ll later start with the node

command. In this case, name it index.js.

 The file has these parts:

 Imports—Requires dependencies such as express and its plug-ins

 Configurations—Sets certain configuration values such as what template engine

to use

 Middleware—Defines common actions performed for all incoming requests,

such as validation, authentication, compression, and so on

 Routes—Defines the URLs handled by this server, such as /accounts, /users, and

so on, as well as their actions

Figure 17.5 Rendering from the React component on the server side

357React and Express: rendering on the server side from components

 Error handlers—Show meaningful messages or web pages when errors happen

 Bootup—Starts HTTP and/or HTTPS server(s)

Here’s a high-level overview of the Express and Node server file:

const express = require('express')
const app = express()
const errorHandler = require('errorhandler')
const http = require('http')
const https = require('https')
// Import other modules
// ...

app.set('view engine', 'hbs')

app.get('/',
// ...

)
app.get('/about',

// ...
)

// ...

app.use(errorHandler)

http.createServer(app)
.listen(3000)

// ...
if (typeof options != 'undefined')

https.createServer(app, options)
.listen(443)

Now let’s go deeper. The imports section is straightforward. In it, you require depen-

dencies and instantiate objects. For example, to import the Express.js framework and

to create an instance, write these lines:

var express = require('express')
var app = express()

CONFIGURATION

You set configurations with app.set(), where the first argument is a string and the

second is a value. For example, to set the template engine to hbs (www.npmjs.com/

package/hbs), use this configuration view engine:

app.set('view engine', 'hbs')

hbs (no affiliation with Harvard Business School) is an Express template (or view)

engine for the Handlebars template language (http://handlebarsjs.com). You may

have worked with Handlebars or a close relative of it, such as Mustache, Blaze, and so

Imports modules

Sets configurations

Defines routes (no pure
middleware in this project)

Defines error handlers
(type of middleware)

Boots up the HTTP server

Boots up the HTTPS server

358 CHAPTER 17 React on Node and Universal JavaScript

on. Ember also uses Handlebars (http://mng.bz/90Q2). It’s a common, easy-to-get-

started template, which is why you’ll use it here.

 One caveat: you must install the hbs package in order for Express to properly use

the view engine. Do so by executing npm i hbs --save.

MIDDLEWARE

The next section sets up middleware. For example, to enable the app to serve static

assets, use the static middleware:

app.use(express.static(path.join(__dirname, 'public')))

The static middleware is great because it turns Express into a static HTTP(S) server

that proxies requests to files in a specified folder (public in this example), just as

NGINX or Apache httpd would.

ROUTES

Next are routes, also known as endpoints, resources, pages, and many other names.

You define a URL pattern that will be matched by Express against real URLs of incom-

ing requests. If there’s a match, Express will execute the logic associated with this URL

pattern; this is called handling a request. It can involve anything from displaying static

HTML for a 404 Not Found page to making a request to another service and caching

the response before sending it back to the client.

 Routes are the most important part of a web application because they define URL

routing and in a way act as controllers in your good-old model-view-controller (MVC)

pattern. In Express, you define routes using the app.NAME() pattern, where NAME is

the name of an HTTP method in lowercase. For example, this is a syntax to GET the /

(home page or empty URL) endpoint, which will send back the string “Hello”:

app.get('/', (request, response, next) => {
response.send('Hello!')

})

For the /about page/route, you can change the first argument (the URL pattern). You

can also render the HTML string:

app.get('/about', (req, res, next) => {
response.send(`<div>
Node.University
is home to top-

notch Node education which brings joy to JavaScript engineers.
</div>`)
})

LAYOUT WITH HANDLEBARS

Next you want to render React HTML from the Handlebars template, because Handle-

bars will provide you with an overall layout including such things as <html> and <body>.

In other words, you have React for UI elements and Handlebars for the layout.

359React and Express: rendering on the server side from components

 Create a new views folder containing this template, called about.hbs:

<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8" />
<title>React + Express = </title>
<meta name="author" content="Azat" />

</head>

<body>
<div id="content">{{{about}}}</div>

</body>
</html>

RENDERING THE PAGE

In the route (in the file ch17/react-express/index.js), change response.send() to

response.render():

// ...
const React = require('react')
require('babel-register')({

presets: ['react']
})
const About =

React.createFactory(require('../components/about.jsx'))
// ...
app.get('/about', (request, response, next) => {

const aboutHTMl = ReactDOMServer.renderToString(About())
response.render('about', {about: aboutHTMl})

})
// ...

Express routes can render from Handlebars templates, with data such as the about

string variable, or send a response in a string format. 4

4 See chapter 3 or https://facebook.github.io/react/docs/dom-elements.html#dangerouslysetinnerhtml.

Uses a heart

Uses triple curly braces to output
unescaped HTML from the about
variable (supplied in index.js)

Enhances require to convert JSX
on the fly, which will enable you
to import/require JSX files

Prepares the About
component

Generates a React
HTML string with
React markupPasses the React HTML string to the

Handlebars template about.hbs

Do you have to use a different template engine for server rendering and layouts?

It’s possible to use React for layouts, instead of Handlebars. There’s an express-
react-views library to do that (www.npmjs.com/package/express-react-views). It’s

only for static markup, not for browser React.

I won’t cover it here, because it requires extensive use of dangerouslySet-
InnerHTML,4 doesn’t support all HTML, and often confuses beginner Express-React

developers. In my humble opinion, there’s little benefit to using React for layouts.

360 CHAPTER 17 React on Node and Universal JavaScript

HANDLING ERRORS

Error handlers are similar to middleware. For example, they can be imported from a

package such as errorhandler (www.npmjs.org/package/errorhandler):

const errorHandler = require('errorhandler')
...
app.use(errorHandler)

Or you can create them in index.js:

app.use((error, request, response, next) => {
console.error(request.url, error)
response.send('Wonderful, something went wrong...')

})

You trigger an error handler by invoking next(error) in a request handler or middle-

ware. error is an error object, which you can create with new Error('Ooops'), where

“Ooops” will become the error message. Here’s an example in /about:

app.get('/about', (request, response, next) => {
// ... do weird stuff
let somethingWeirdHappened = true
if (somethingWeirdHappened) return next(new Error('Ooops'))

})

Don’t forget to use return. For more about error handling in Node and Express, check

out the Node Patterns course (http://node.university/p/node-patterns) or my post

“Node Patterns: From Callbacks to Observer” (http://webapplog.com/node-patterns).

BOOTING UP THE SERVER

Finally, to start your app, run listen() by passing a port number and a callback

(optional):

http.createServer(app).listen(portNumber, callback)

In this example, it looks like this:

http.createServer(app)
.listen(3000)

Here’s the full server code for ch17/react-express/index.js, to make sure nothing has

slipped through the cracks.

const fs = require('fs')
const express = require('express')
const app = express()
const errorHandler = require('errorhandler')

Listing 17.5 Full code for React, Express, hbs server

361React and Express: rendering on the server side from components

const http = require('http')
const https = require('https')

const React = require('react')
require('babel-register')({

presets: ['react']
})
const ReactDOMServer = require('react-dom/server')
const About = React.createFactory(require('./components/about.jsx'))

app.set('view engine', 'hbs')
app.get('/', (request, response, next)=>{

response.send('Hello!')
})

app.get('/about', (request, response, next) => {
const aboutHTMl = ReactDOMServer.renderToString(About())
response.render('about', {about: aboutHTMl})

})

app.all('*', (request, response, next)=> {
response.status(404).send('Not found...

➥ did you mean to go to /about instead?')
})
app.use((error, request, response, next) => {

console.error(request.url, error)
response.send('Wonderful, something went wrong...')

})

app.use(errorHandler)

http.createServer(app)
.listen(3000)

try {
const options = {
key: fs.readFileSync('./server.key'),
cert: fs.readFileSync('./server.crt')

}
} catch (e) {

console.warn('Create server.key and server.crt for HTTPS')
}
if (typeof options != 'undefined')

https.createServer(app, options)
.listen(443)5

Now everything should be ready to run the server with node index.js or its shortcut

(node .) to see the server response when you navigate to http://localhost:3000/about.

If something is missing or you get errors when you start the server and navigate to the

address, refer to the project source code in ch17/react-express.

5 You can look up how to generate them in my post “Easy HTTP/2 Server with Node.js and Express.js,”
https://webapplog.com/http2-node.

Implements a catchall fallback.
You wouldn’t believe how many
people in my classes
implement a server, go to a
nonexistent URL, and think
there’s an error, when in fact
they should be viewing /about.

Loads the key and
certificate for SSL/HTTPS5

362 CHAPTER 17 React on Node and Universal JavaScript

WARNING The SSL key and certificate are needed for SSL and HTTPS to work.
The GitHub code for this example purposely doesn’t include server.key and
server.crt, because sensitive information like keys shouldn’t be committed to a version-
control system. You should create your own keys by following the instructions at
https://webapplog.com/http2-node. If you don’t have them, then the exam-
ple code will only create an HTTP server.

The end result should be a proper HTML page with a header and body. In the body

should be React markup such as data-react-checksum and data-reactroot, as

shown in figure 17.6.

 Why does this example use markup rendering and not static HTML strings or

express-react-views? You’ll need this markup with checksums later, for the browser

React; that’s the Universal JavaScript architecture.

 In the next section, you’ll put together all you’ve learned about React on the browser,

Express, and React on Node to implement a Universal JavaScript architecture.

Figure 17.6 Rendering React markup from a Handlebars layout using Express gives you an HTML page.

363Universal JavaScript with Express and React

17.4 Universal JavaScript with Express and React

This section combines all the skills from this chapter (and most of the book!). You’ll

render component(s) on the server, plug them in the template, and enable browser

React.

 To learn about Universal JavaScript, you’ll build a message board with three com-

ponents: Header, Footer, and MessageBoard (see figure 17.7). The Header and Footer

components will have static HTML to display some text, and MessageBoard will have a

form to post messages on the board and a list of messages. This app will use AJAX calls

to get the list of messages and post new messages to the back-end server, which in turn

will use a MongoDB NoSQL database.

Figure 17.7 Message board app with a form to post a message and a list of existing messages

364 CHAPTER 17 React on Node and Universal JavaScript

Concisely, for Universal React, you’ll need to follow these steps:

1 Set up the server so that it provides data to the template and renders HTML

(components and properties), such as index.js.

2 Create a template that outputs data (a.k.a. locals) unescaped, such as

views/index.hbs.

3 Include the browser React file (ReactDOM.Render) in the template for interac-

tivity, such as client/app.jsx.

4 Create the Header, Footer, and MessageBoard components.

5 Set up build processes with Webpack, such as webpack.config.js.

A few parts interact with each other: server, components, data, and browser. Figure 17.8

shows a diagram of how they’re connected in the message board example. The server

acts as a static-assets HTTP server and as an app that renders server-side HTML (first page

load only). Browser React code enables interactivity of browser events and subsequent

persistence (via HTTP requests to the server) after the initial page load.

NOTE You also need to install and launch MongoDB in order for this exam-
ple to work. You can read about installation on its website or in appendix D.
After you install MongoDB, run mongod and leave it running. This will allow
your Express server to connect to it using the magic URL mongodb://local-
host:27017/board.

Server

Data

Browser

First page load: Full HTML
markup with data and
browser React code

Subsequent requests
from browser JS: Data
only (JSON)

React JSX transpiled
to JS with Webpack
and Babel

1. Generate HTML from React

 components and data

2. Render HTML in server-side

 template engine

3. Serve static assets

React components in JS

React components in JSX

Figure 17.8 Gist of Universal JavaScript with React and Express

365Universal JavaScript with Express and React

17.4.1 Project structure and configuration

The project structure is as follows:

/client
app.jsx

/components
board.jsx
footer.jsx
header.jsx

/node_modules
/public

/css
/js
bundle.js
bundle.js.map

/views
index.hbs

index.js
package.json
webpack.config.js

The server dependencies include these packages (quoted from package.json):

...
"dependencies": {

"babel-register": "6.11.6",
"body-parser": "1.13.2",
"compression": "1.5.1",
"errorhandler": "1.4.1",
"express": "4.13.1",
"hbs": "4.0.0",
"express-validator": "2.13.0",
"mongodb": "2.2.6",
"morgan": "1.6.1",
"react": "15.5.4",
"react-dom": "15.5.4"

},
...

Now you can set up the server in message-board/index.js.

Client/browser code

Shared code between the
client/browser and server

Compiled and bundled
by Webpack scripts

Server code

Loads JSX from
Node with require

Uses the Express
framework

Uses MongoDB to store messages
(this is the driver; you need both
the driver and the database)

Uses React
to render on

the server

Express middleware

I want to say a few words about the middleware used in this project, in case you’re

new to Express. Express isn’t a large framework that does almost everything for you.

On the contrary, it’s a base foundation layer on top of which Node engineers build

custom systems that are virtually their own frameworks. They are fit precisely to the

task at hand, which isn’t always the case with all-in-one frameworks. You get only

what you need with Express and its ecosystem of plug-ins. Those plug-ins are called

middleware because they use the middleware pattern, with Express implementing the

middleware manager.

366 CHAPTER 17 React on Node and Universal JavaScript

17.4.2 Setting up the server

Just as you did in the previous examples, you’ll implement the server side of things in

index.js and then work through the five sections so you can see how it breaks down.

First, the following listing shows it in full (ch17/message-board/index.js).

require('babel-register')({
presets: ['react']

})

const express = require('express'),
mongodb = require('mongodb'),
app = express(),
bodyParser = require('body-parser'),
validator = require('express-validator'),
logger = require('morgan'),
errorHandler = require('errorhandler'),
compression = require('compression'),
url = 'mongodb://localhost:27017/board',
ReactDOMServer = require('react-dom/server'),
React = require('react')

const Header = React.createFactory(require('./components/header.jsx')),
Footer = React.createFactory(require('./components/footer.jsx')),
MessageBoard = React.createFactory(require('./components/board.jsx'))

mongodb.MongoClient.connect(url, (err, db) => {
if (err) {
console.error(err)

Listing 17.6 Server side of the message board app

(continued)

Every Express engineer has favorite middleware packages that they use from project

to project. I tend to start with the following and then add more packages if and when

I need them:

 compression—Automatically compresses responses using the gzip algo-

rithm. This makes responses smaller and faster to download, which is useful.

 errorhandler—Rudimentary handler for errors such as 404 and 500.

 express-validator—Validates the payload of incoming requests. It’s

always a good idea to have this.

 morgan—Logs requests on the server. Supports multiple formats.

 body-parser—Enables automatic parsing of JSON and the urlencoded data

format into Node/JS objects accessible in request.body.

For information about compression, body-parser, and errorhandler, as well as a

list of additional Express middleware, see appendix C, https://github.com/azat-

co/cheatsheets/tree/master/express4, or Pro Express.js (http://proexpressjs.com).

Defines a display name for the Imports
JSX and compiles it on the fly to JS HOC

Defines the address of the
local MongoDB instance as
well as the DB name (board)

Connects to the MongoDB
instance using the URI

367Universal JavaScript with Express and React

process.exit(1)
}

app.set('view engine', 'hbs')

app.use(compression())
app.use(logger('dev'))
app.use(errorHandler())
app.use(bodyParser.urlencoded({extended: true}))
app.use(bodyParser.json())
app.use(validator())
app.use(express.static('public'))

app.set('view engine', 'hbs')

app.use((req, res, next) => {
req.messages = db.collection('messages')
return next()

})

app.get('/messages', (req, res, next) => {
// ...

})
app.post('/messages', (req, res, next) => {
// ...

})

app.get('/', (req, res, next) => {
// ...

})

app.listen(3000)
})

CONFIGURATION

Again, you need to use babel-register to import JSX, after installing babel-register

and babel-preset-react with npm:

require('babel-register')({
presets: ['react']

})

In index.js, you implement your Express server. Let’s import the components using

the relative path ./components/:

const Header = React.createFactory(require('./components/header.jsx')),
Footer = React.createFactory(require('./components/footer.jsx')),
MessageBoard = React.createFactory(require('./components/board.jsx'))

For the purpose of rendering React apps, you need to know that Express.js can use

pretty much any template engine. Let’s consider Handlebars, which is close to regular

Sets collection as a property
of a request object for easier
access in other routes and
their modularization

368 CHAPTER 17 React on Node and Universal JavaScript

HTML. You can enable Handlebars with this statement, assuming app is the Express.js

instance:

app.set('view engine', 'hbs')

The hbs module must be installed (I have it in package.json).

MIDDLEWARE

Middleware provides a lot of functionality for your server that you’d otherwise have to

implement yourself. The following are the most essential for this project:

// ...
app.use(compression())
app.use(logger('dev'))
app.use(errorHandler())
app.use(bodyParser.urlencoded({extended: true}))
app.use(bodyParser.json())
app.use(validator())
app.use(express.static('public'))
// ...

SERVER-SIDE ROUTES

In your route—let’s say, /—you call render on views/index.handlebars (res.render

('index')), because the default template folder is views:

app.get('/', (req, res, next) => {
req.messages.find({}, {sort: {_id: -1}}).toArray((err, docs) => {

if (err) return next(err)
res.render('index', data)

})
})

The req.message.find() call is a MongoDB method to fetch documents. Although you

must have MongoDB installed and running for this example to work verbatim (without

any changes), I don’t like to enforce my database preference on you. It’s easy to replace

calls to MongoDB with whatever you want. Most modern RDBMS and NoSQL databases

have Node drivers; most of them even have ORM/ODM libraries written in Node. There-

fore, you can safely ignore my DB call, if you’re not planning to use MongoDB. If you do

want to use MongoDB, appendix D has a cheatsheet for you. The idea is that in the

request handler, you can make a call to an external service (for example, using axios

to get Facebook user information) or use a database (MongoDB, PostgreSQL, and so

on). How you get the data in Node isn’t the focus of this chapter.

 The most important thing here with regard to Universal React is res.render()

(ch17/message-board/index.js), shown in listing 17.7. This render() method is a spe-

cial Express feature for templates. It has two arguments. The first is the name of the

template: index.hbs, which is in the views directory. The second argument to

res.render() is the locals: data that will be used in the templates. All the data is sent

Enables server logs for
requests to help with
debugging and developmentEnables parsing

of the incoming
JSON data
payloads

Enables access to all the files
under public, such as bundle.js

369Universal JavaScript with Express and React

(or combined with or hydrated) to the ch17/message-board/view/index.hbs template

(the .hbs extension is optional).

...
app.set('view engine', 'hbs')
...

app.get('/', (req, res, next) => {
req.messages.find({},

{sort: {_id: -1}}).toArray((err, docs) => {
if (err) return next(err)
res.render('index', {

header: ReactDOMServer.renderToString(Header()),
footer: ReactDOMServer.renderToString(Footer()),
messageBoard: ReactDOMServer.renderToString(MessageBoard({

messages: docs
})),
props: '<script type="text/javascript">var messages='

+JSON.stringify(docs)
+'</script>'

})
})

})

At this point, you have an Express server that renders a Handlebars template with

three HTML strings from React components. This isn’t exciting by itself; you could

have done this without React. You could have used Handlebars or Pug or Mustache or

any other template engine to render everything, not just the layout. Why do you need

React? Well, you’ll be using React on the browser, and browser React will take your

server HTML and add all the events and states—all the magic. That’s why!

 You aren’t finished with the server yet. You need to implement the two APIs for this

example:

 GET /messages—Gets a list of messages from a database

 POST /messages—Creates a new message in a database

These routes will be used by browser React when it makes AJAX/XHR requests to GET

and POST data. The code for the routes goes in Express, in index.js:

app.get('/messages', (req, res, next) => {
req.messages.find({},

{sort: {_id: -1}}).toArray((err, docs) => {
if (err) return next(err)
return res.json(docs)

})
})

Listing 17.7 Rendering HTML generated from React components

Applies the Handlebars
template engine

Requests an array of
messages from MongoDB,
inverse-sorted by ObjectID

Sends an HTML string
generated from Header

Sends an
HTML string

generated
from Footer

Sends an HTML string generated
from MessageBoard with a list of

messages (docs) as a property

Sends a list
of messages
to browser

React

370 CHAPTER 17 React on Node and Universal JavaScript

The route to handle creation of messages (POST /messages) will use express-validator

to make sure the incoming data is present (notEmpty()). express-validator is conve-

nient middleware because you can set up all kinds of validation rules.

WARNING Input validation is paramount to securing your apps. Developers
work with the code and the system: they wrote it, they know how it works, and
they know what data it supports. Thus they unconsciously become biased
about the data they feed the app, which can lead to loopholes. Always sanitize
your data server-side. You should consider every user to be potentially either a
malicious attacker or a negligent person who never reads your instructions
and always sends weird data.

The route will also use the reference to the database from req.messages to insert a

new message:

app.post('/messages', (req, res, next) => {
req.checkBody('message',

'Invalid message in body').notEmpty()
req.checkBody('name', 'Invalid name in body').notEmpty()
var errors = req.validationErrors()
if (errors) return next(errors)
req.messages.insert(req.body, (err, result) => {

if (err) return next(err)
return res.json(result.ops[0])

})
})

The bootup call is primitive compared to the previous section, when you used HTTPS:

app.listen(3000)

Obviously, you can add HTTPS to it and change the port number or take the port

number from environment variables.

Checks that the message
is present in the request
body

Inserts the request body
into the database

Outputs the ID of the new document,
which is autogenerated by the database

node-dev

As mentioned earlier, I recommend using the nodemon tool or something similar,

such as node-dev. node-dev monitors for file changes and restarts the server when

changes are detected. It can save you hours of work! To install node-dev, run this

command:

npm i node-dev@3.1.3 --save-dev

In package.json, you can add the command node-dev . to the start npm script:

...
"scripts": {
...
"start": "./node_modules/.bin/webpack && node-dev ."

},
...

371Universal JavaScript with Express and React

 Remember, the root / route handles all the GET requests to / or to http://local-

host:3000/, in this case. It’s implemented in listing 17.7 (ch17/message-board/

view/index.hbs). The route uses a template called index in res.render(). Now, let’s

implement the template.

17.4.3 Server-side layout templates with Handlebars

You can use any template engine on the server to render React HTML. Handlebars is a

good option because it’s similar to HTML, which means little modification is needed

when transitioning from HTML to this template engine. Following is the Handlebars

index.hbs file:

<!DOCTYPE html>
<html lang="en">

<head>
<!-- meta tags and CSS -->

</head>

<body>
<div class="container-fluid">
<!-- header -->
<!-- props -->
<!-- messageBoard -->
<!-- footer -->

</div>
<script type="text/javascript" src="/js/bundle.js"></script>
</body>

</html>

You use triple curly braces ({{{...}}}) to output components and properties (unes-

caped output) such as HTML. For example, {{{props}}} will output a <script/>

script tag so you can define a messages variable in it. The index.hbs code to render

unescaped HTML string for props is

<div>{{{props}}}</div>

The rest of the locals (data) are outputted similarly:

<div id="header">{{{header}}}</div>
...
<div>{{{props}}}</div>
...
<div class="row-fluid" id="message-board" />{{{messageBoard}}}</div>
...
<div id="footer">{{{footer}}}</div>

Here’s how you output an HTML string from the Header component in Handlebars

(ch17/message-board/views/index.hbs).

372 CHAPTER 17 React on Node and Universal JavaScript

...
<div class="container-fluid">
<div class="row-fluid">

<div class="span12">
<div id="header">{{{header}}}</div>

</div>
</div>
...

What about the data? In order to get the benefit of server-side React working together

with browser React, you must use the same data on the browser and server when you

create React elements. You can pass the data from the server to browser React without

needing AJAX calls by embedding the data as a JS variable right in the HTML!

 When you pass header, footer, and messageBoard, you can add props in the /

Express route. In index.hbs, print the values with triple curly braces and include the

js/bundle.js script, which will be generated by Webpack later (ch17/message-

board/views/index.hbs).

<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8" />
<title>Message Board with React.js</title>
<meta name="description" content="Message Board" />
<meta name="author" content="Azat Mardan" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<link type="text/css" rel="stylesheet" href="/css/bootstrap.min.css" />
<link type="text/css" rel="stylesheet"

➥ href="/css/bootstrap-responsive.min.css" />
</head>
<body>
<div class="container-fluid">

<div class="row-fluid">
<div class="span12">

<div id="header">{{{header}}}</div>
</div>

</div>
<div>{{{props}}}</div>
<div class="row-fluid">

<div class="span12">
<div id="content">

<div class="row-fluid" id="message-board" />{{{messageBoard}}}</div>
</div>

</div>
<div class="row-fluid">

<div class="span12">
<div id="footer">{{{footer}}}</div>

Listing 17.8 Outputting HTML generated by React in Handlebars

Listing 17.9 Server-side layout to render HTML from React components

Outputs HTML
generated from the
Header component

Outputs HTML containing a <script>
with a list of messages as an array

373Universal JavaScript with Express and React

</div>
</div>

</div>
<script type="text/javascript" src="/js/bundle.js"></script>

</body>
</html>

This template includes some Twitter Bootstrap styling, but it’s not essential for the

project or the Universal JavaScript example. You use a few variables (a.k.a. locals:

header, messageBoard, props, and footer) in your templates, which you need to pro-

vide in the render() of an Express request handler. As a reminder, this is index.js

code that you implemented earlier (listing 17.7, ch17/message-board/view/

index.hbs) and that uses the previous template by calling it index, which is a conven-

tion for index.hbs:

res.render('index', {
header: ReactDOMServer.renderToString(Header()),
footer: ReactDOMServer.renderToString(Footer()),
messageBoard:
ReactDOMServer.renderToString(MessageBoard({messages: docs})),

props: '<script type="text/javascript">var messages='+JSON.stringify(docs)+

➥ '</script>'
})

The values will be generated from React components. This way, you’ll be using the

same components on the server and on the browser. The ability to easily render on

the server (with Node) is the beauty of React.

 Next, let’s move on to variables: props, header, footer, and so on.

17.4.4 Composing React components on the server

You’re finally doing what you did in all the previous chapters: creating React compo-

nents. Isn’t it good to get back to something familiar once in a while? Yes. But where

do the components come from? They live in the components folder. As I mentioned

earlier, the components will be used on the browser and the server; that’s why you’re

putting them in a separate components folder and not creating them in client. (Other

options for component folder names are shared and common.)

 To expose these components, each of them must have module.exports, which is

assigned a value of the component class or a stateless function. For example, you

require React, implement the class or a function, and then export Header as follows:

const React = require('react')
const Header = () => {

return (
<h1>Message Board</h1>

)
}

module.exports = Header

Includes browser React

Although there’s no
mention of React in the
code, it’s used by JSX.

Declares a stateless
component

Exports the
stateless

component

374 CHAPTER 17 React on Node and Universal JavaScript

The message board will use AJAX/XHR calls to get a list of messages and post a new

message. The calls are in board.jsx. The file will include MessageBoard. It’s your con-

tainer (smart) component, so the calls are in that component.

 It’s interesting to look at where you make AJAX calls in MessageBoard: in component-

DidMount(), because this lifecycle event will never be called on the server (ch17/

message-board/components/board.jsx)!

const request = require('axios')
const url = 'http://localhost:3000/messages'
const fD = ReactDOM.findDOMNode
...
class MessageBoard extends React.Component {

constructor(ops) {
super(ops)
this.addMessage = this.addMessage.bind(this)
if (this.props.messages)

this.state = {messages: this.props.messages}
}
componentDidMount() {
request.get(url, (result) => {

if(!result || !result.length){
return;

}
this.setState({messages: result})

})
}
addMessage(message) {
let messages = this.state.messages
request.post(url, message)

.then(result => result.data)

.then((data) =>{
if(!data){

return console.error('Failed to save')
}
console.log('Saved!')
messages.unshift(data)
this.setState({messages: messages})

})
}
render() {
return (

<div>
<NewMessage messages={this.state.messages} addMessageCb=

{this.addMessage} />
<MessageList messages={this.state.messages} />

</div>
)

}
}

Listing 17.10 Fetching messages and sending a message

Creates a variable for
the server address. It
can be changed later.

Makes a GET request with axios
and updates the state on success
with the list of messages

Makes a POST request with
axios and, on success, adds the
message to the list of messages
by updating the state

Passes the method to add messages to the
NewMessage representational/dumb component,

which will create a form and event listeners

375Universal JavaScript with Express and React

You can look up the implementation of NewMessage and MessageList in the same file

(ch17/message-board/components/board.jsx); I won’t bore you here. They’re repre-

sentational components with little or no logic—just the description of the UI in the

form of JSX.

 You’re done with rendering React (and layout) HTML on the server. Now, let’s sync

up the markup with the browser React; otherwise, no messages would be added—

there would be no interactive browser JavaScript events!

17.4.5 Client-side React code

If you stopped the implementation at this point, there would be only static markup

from the rendering of React components on the server. New messages wouldn’t be

saved, because the onClick event for the POST button wouldn’t work. You need to plug

in the browser React to take over where the server’s static markup rendering left off.

 You create app.jsx as a browser-only file. It won’t be executed on the server (unlike

the components). This is the place to put ReactDOM.render() calls to enable browser

React:

ReactDOM.render(<MessageBoard messages={messages}/>,
document.getElementById('message-board')

)

You also need to use the global messages as a property for MessageBoard. The

messages property value will be populated by the server-side template and

{{{props}}} data (see section 17.4.3). In other words, the messages array of messages

will be populated from index.hbs when the template gets data (called locals) from the

props variable in the Express.js route /.

 Failure to provide the same messages property to MessageBoard on the server and

on the browser will result in browser React repainting the entire component, because

browser React will consider the views to be different. Under the hood, React will use the

checksum attribute to compare the data that’s already in the DOM (from the server-side

rendering) with whatever browser React comes up with. React uses checksum because

it’s quicker than doing an actual tree comparison (which could take a while).

 In the app.js file, you need to require some front-end libraries and then render out

components in the DOM (ch17/message-board/client/app.jsx).

const React = require('react')
const ReactDOM = require('react-dom')

const Header = require('../components/header.jsx')
const Footer = require('../components/footer.jsx')
const MessageBoard = require('../components/board.jsx')

ReactDOM.render(<Header />, document.getElementById('header'))

Listing 17.11 Rendering client React components on the browser

376 CHAPTER 17 React on Node and Universal JavaScript

ReactDOM.render(<Footer />, document.getElementById('footer'))
ReactDOM.render(<MessageBoard messages={messages}/>,

➥ document.getElementById('message-board'))

The browser code is tiny!

17.4.6 Setting up Webpack

The final step is setting up Webpack to bundle the browser code into one file, manage

dependencies, and convert JSX code. First you need to configure Webpack as follows,

with the entry point client/app.jsx, with output set to public/js in the project folder,

and using Babel loaders. The devtool setting gets the proper source code lines in

Chrome DevTools (not the lines from the compiled JS code):

module.exports = {
entry: './client/app.jsx',
output: {
path: __dirname + '/public/js/',
filename: 'bundle.js'

},
devtool: '#sourcemap',
stats: {
colors: true,
reasons: true

},
module: {
loaders: [

{
test: /\.jsx?$/,
exclude: /(node_modules)/,
loader: 'babel-loader'

}
]

}
}

To convert JSX to JS, you can use babel-preset-react and specify the Babel configs in

package.json:

...
"babel": {
"presets": [

"react"
]

},
...

The client-side dependencies (for browser React) like Babel and Webpack in package

.json will be development dependencies, because Webpack will bundle everything

that’s needed into bundle.js. Thus you won’t need them at runtime:

377Universal JavaScript with Express and React

{
...
"devDependencies": {
"axios": "0.13.1",
"babel-core": "6.10.4",
"babel-jest": "13.2.2",
"babel-loader": "6.2.4",
"babel-preset-react": "6.5.0",
"node-dev": "3.1.3",
"webpack": "1.13.1"

}
}

TIP Be sure you use the exact versions provided here. Otherwise, all the new
stuff that will come out when I’m done writing this paragraph will break the
project—and I’m only half joking!

Also, while you’re in package.json, add an npm build script (it’s optional but more

convenient):

...
"scripts": {
...
"build": "./node_modules/.bin/webpack"

},
...

I personally love to use watch for Webpack (-w). In package.json, you can add the

option -w to the npm build script:

...
"scripts": {
"build": "./node_modules/.bin/webpack -w",
...

},
...

Consequently, every time you run npm run build, Webpack will use Babel to convert

JSX into JS and stitch all the files with their dependencies into a giant ball. In this case,

it will be put in /public/js/app.js.

 Thanks to the include in the views/index.hbs template, right before the ending

</body> tag, the browser code is working (the following line is what’s in the template):

<script type="text/javascript" src="/js/bundle.js"></script>

When I run this default task with npm run build, I see these logs:

Hash: 1d4cfcb6db55f1438550
Version: webpack 1.13.1
Time: 733ms

378 CHAPTER 17 React on Node and Universal JavaScript

Asset Size Chunks Chunk Names
bundle.js 782 kB 0 [emitted] main

bundle.js.map 918 kB 0 [emitted] main
+ 200 hidden modules

That’s a good sign. If you see another message or errors, compare your project with

the code on at www.manning.com/books/react-quickly or https://github.com/azat-

co/react-quickly/tree/master/ch17.

17.4.7 Running the app

That’s it as far as rendering React.js components in Express.js apps goes. Typically, all

you need are the following (assuming you have a build process and components):

 A template that outputs locals/data unescaped

 A res.render() call to hydrate data to the template and render it (compo-

nents, properties, and such)

 Inclusion of the browser React file (with ReactDOM.Render) in the template for

interactivity

Are you still confused about Universal Express and React? If so, get the tested, working

code for the project from www.manning.com/books/react-quickly or https://

github.com/azat-co/react-quickly/tree/master/ch17/message-board and poke around.

You can remove code in app.js to disable browser React (so there’s no interactivity such

as mouse clicks), or remove code in index.js to disable server React (slight delay when

loading a page).

 To run the project, have MongoDB running ($ mongod; for more instructions see

appendix D). In the project folder, run these commands:

$ npm install
$ npm start

Don’t forget to either have Webpack running builds in watch mode (npm run build)

or restart the app every time you make a change to the browser code.

 Open http://localhost:3000 in your browser, and you’ll see the message board

(see figure 17.9). If you look closely at the way the page is loaded (Chrome DevTools),

you’ll see that the first load is fast because the HTML is rendered on the server.

 When you comment out the code in ch17/message-board/index.js that’s responsi-

ble for server-side rendering, you can compare the timing by looking at the Network

tab. There, notice the localhost resource (first page load and server-side rendering)

and the GET XHR call to /messages. My results for the localhost are much faster, as

shown in figure 17.10.

 Of course, the bulk of the total loading time is taken up by bundle.js. After all, it

has more than 200 modules! GET /messages doesn’t take too long—just a few millisec-

onds. But still, users will see everything on the page when the localhost call happens.

Conversely, without isomorphic/universal code, users will see fully formed HTML only

after GET /messages, plus some for browser React to render the HTML client-side.

379Universal JavaScript with Express and React

Figure 17.9 Universal app in action, with server and browser rendering

Full server-side HTML
(first page load)

Without full server-side HTML, users have
to wait for this XHR call to fetch the data
before browser rendering starts.

Figure 17.10 Loading the server-side HTML is 10 times faster than complete loading, which is slower due to bundle.js.

380 CHAPTER 17 React on Node and Universal JavaScript

Let’s inspect the app from a different perspective by comparing Universal versus browser

rendering side by side. Figure 17.11 shows the results for localhost. With the Universal

Browser-only:
localhost has
bare-bones HTML

Server-side:
localhost has
all data

Figure 17.11 Localhost (first response) for browser-only rendering (top) vs. server-side rendering (bottom)

381Universal JavaScript with Express and React

approach, localhost has all the data, and it loads in a mere 20–30 ms. With browser-only

React, localhost has only bare-bones, skeleton HTML. So, users will have to wait about 10

times as long. Anything greater than 150 ms is usually noticeable by humans.

 You can play around by commenting out the rendering statements in index.js

(Express.js) or app.jsx (browser React). For example, if you comment out the server-

side Header but leave the browser render for Header intact, then you may not see

Header for a few moments before it appears.

 Also, if you comment out passing the props variable on the server or modify its

value, browser React will update the DOM after getting the list of messages for axios.

React will give you a warning that checksums don’t match.

Universal routing and data

Sooner or later, your application will grow, and you’ll need to use libraries such as

React Router and Redux to route data (covered in chapters 13 and 14). Interestingly,

these libraries already support Node, and React Router even supports Express. For

example, you can pass React Router routes to Express for server-side support via

match and RouterContext, to render components on the server side:

const { renderToString } = require('react-dom/server')
const { match, RouterContext } = require ('react-router')
const routes = require('./routes')
// ...
app.get('/', (req, res) => {

match({ routes,
location: req.url
},
(error,
redirectLocation,
renderProps) => {
// ...
res

.status(200)

.send(renderToString(
<RouterContext {...renderProps} />

))
})

}

Redux has the createStore() method (chapter 14), which you can use server-side

in Express middleware to provide a data store. For example, for an App component,

the server-side code with Redux will look like this:

const { createStore } = require('redux')
const { Provider } = require('react-redux')
const reducers = require('./modules')
const routes = require('./routes')

// ...

Uses a special method
from React Router

Passes the location/URL to
the React Router method

Renders an HTML string
using a special React Router
component and properties

382 CHAPTER 17 React on Node and Universal JavaScript

This concludes the discussion of isomorphic or Universal JavaScript. The uniformity

and code reuse it provides are tremendous benefits that help developers be more pro-

ductive and live happier work lives!

17.5 Quiz

1 What is the method used to render a React component on the server?

2 Rendering the first page on the server improves performance. True or false?

3 CommonJS and Node.js module syntax, using require() (along with Web-

pack), lets you “require” or import npm modules in browser code. True or

false?

4 Which of the following is used to output unescaped strings in Handlebars?

<%...%>, {{...}}, {{{...}}} or dangerouslySetInnerHTML=...

5 What is the best place to put AJAX/XHR calls in browser React so they won’t be

triggered on the server?

(continued)

app.use((req, res) => {
const store = createStore(reducers)
const html = renderToString(
<Provider store={store}>

<App/>
</Provider>

)

const preloadedState = store.getState()

res.render('index', {html, preloadedState})
})

The index template looks like this:

<div id="root">${html}</div>
<script>

window.__PRELOADED_STATE__ = ${JSON.stringify(preloadedState)}
</script>
<script src="/static/bundle.js"></script>

Redux uses the same approach that you used for the message board: rendering

HTML and data in a <script> tag.

The full example with explanations is at http://mng.bz/F5pb and http://mng.bz/

Edyx.

Creates a new Redux
store instance

Renders the component
to a string

Enables store

Accesses the initial state
from the Redux store

Renders the page
back to the client
using HTML and data

383Quiz answers

17.6 Summary

 To use and render React on the server, you need react-dom/server and render-

ToString().

 The data must be the same to sync server React HTML with browser React.

React uses checksums for comparison.

 The difference between renderToString() and renderToStaticMarkup() is

that one has checksums, which allows browser React to reuse the HTML

(renderToString()), and the other doesn’t.

 For Universal JS to work, you render React on the server, supply browser React

with the same data, and render browser React components.

 Use triple curly braces {{{html}}} to output unescaped HTML content in

Handlebars.

17.7 Quiz answers

1ReactDOMServer.renderToString(). renderToStaticMarkup() won’t render

checksums.

2True. You get all the data on the first page load without having to wait for bundle.js

and AJAX requests.

3True. You can use the require() and module.exports syntax right out of the box

with Webpack. Just by setting an entry point in the webpack.config.js, you can

make Webpack traverse all the dependencies from there and include only the

needed ones.

4{{{...}}} is the correct syntax. For escaped variables, use {{data}} to ensure

safer usage.

5componentDidMount(), because it will never be called on server rendering.

384

Project:
 Building a bookstore

 with React Router

The project in this chapter focuses mainly on demonstrating how to use React

Router, some ES6 features, and Webpack. In this project, you’ll build a simple

e-commerce storefront for a bookstore (figure 18.1).

 You’ll learn how to create browser routing, as well as the following techniques

for working with React Router:

 How to pass data to a route and access it

 How to access URL parameters

 How to create modal windows with changing URLs

 How to use layouts by nesting routes

This chapter covers

 Project structure and Webpack configuration

 The host HTML file

 Creating components

 Launching the project

Watch this chapter’s introduction video by

scanning this QR code with your phone or going

to http://reactquickly.co/videos/ch18.

385

To illustrate these techniques, the project includes several screens with different routes:

 Home (/)—The storefront with a book list

 Product page (/product/:id)—A separate product page

 Cart (/cart)—A web page showing the quantities and titles selected by the user

 Checkout (/checkout)—A print-ready invoice with the list of books

The product information will come from an array of data set in one of the files

(ch18/nile/jsx/app.js; refer to the project structure in the next section). The product

page can act as a modal dialog or as a separate page. When you click a product image

on the home page, a modal dialog will open; for example, figure 18.2 shows a modal

dialog with the detailed view of React Quickly.

 The URL is /products/3 followed by the hash token to keep track of the state. The

link is shareable: if you open it in a new window/tab, it’s a normal screen, not a modal

dialog (see figure 18.3). Modals are useful when you’re navigating through a list and

don’t want to lose the context by going to a new page. But when you share a direct

product link, there’s no context or list—you want to focus attention on the product.

 The roadmap to implementing the bookstore front end consists of the following

steps:

1 Setting up the project with npm, Babel, and Webpack

2 Creating the HTML file

3 Creating the components

4 Launching the project

Figure 18.1 Nile Book Store home page with a list of books

386 CHAPTER 18 Project: Building a bookstore with React Router

Figure 18.2 Product view in a modal window of the Nile bookstore

Figure 18.3 A direct link opens the product view in a new window rather than a modal.

387Project structure and Webpack configuration

I encourage you to implement the items listed in the “Homework” section at the end

of the chapter and submit your code to the book’s GitHub repository:

https://github.com/azat-co/react-quickly.

NOTE To follow along with the project, you’ll need to download the unmini-
fied version of React and install node.js and npm for compiling JSX. I’m also
using Webpack as the build tool. Appendix A covers how to install everything.

NOTE The source code for the project in this chapter is at www.manning
.com/books/react-quickly and https://github.com/azat-co/react-quickly/
tree/master/ch18. You can also find some demos at http://
reactquickly.co/demos.

Let’s start with setting up the project.

18.1 Project structure and Webpack configuration

You have a basic understanding of the end result of this project: a front-end web app

with URL routing. Time to jump in to the project structure. This is what the folder

structure will look like:

/css
bootstrap.css

/images
...

/js
bundle.js
bundle.js.map

/jsx
app.jsx
cart.jsx
checkout.jsx
modal.jsx
product.jsx

/node_modules
...

index.html
package.json
webpack.config.js

I’ve abridged the contents of the images and node_modules folders for the sake of

brevity. This is a front-end-only application, but you need package.json to install

dependencies and tell Babel what to do. The following listing shows those dependen-

cies in full, in package.json.

{
"name": "nile",
"version": "1.0.0",
"description": "",
"main": "index.js",

Listing 18.1 Nile Book Store project dependencies and setup

Compiled and
bundled code

Entry-point script
with App and

ReactDOM.render() Shopping cart
component

Modal
component

Host HTML file

388 CHAPTER 18 Project: Building a bookstore with React Router

"author": "Azat Mardan",
"license": "MIT",
"scripts": {
"build": "node ./node_modules/webpack/bin/webpack.js -w"

},
"babel": {
"plugins": [

"transform-react-jsx"
],
"presets": [

"es2015"
],
"ignore": [

"js/bundle.js",
"node_modules/**/*.js"

]
},
"devDependencies": {
"babel-core": "6.3.21",
"babel-loader": "6.4.1",
"babel-plugin-transform-react-jsx": "6.3.13",
"babel-preset-es2015": "6.3.13",
"history": "4.0.0",
"react": "15.5.4",
"react-addons-test-utils": "15.2.1",
"react-dom": "15.5.4",
"react-router": "2.8.0",
"webpack": "2.4.1",
"webpack-dev-server": "1.14.0"

}
}

After starting with the standard project properties, the scripts command points to

the local installation of Webpack. This way, you’re using the same version as in the

devDependencies property. The build creates the bundle.js file and starts the Web-

pack development server on port 8080. You don’t have to use it; you can instead build

manually each time there’s a change and use node-static (https://github.com/

cloudhead/node-static) or a similar local web server:

"scripts": {
"build": "node ./node_modules/webpack/bin/webpack.js -w"

},

The next line is required for Babel v6.x, because without it Babel won’t do much.

You’re telling Babel to use the JSX transformer and ES2015 presets:

"babel": {
"plugins": [

"transform-react-jsx"
],
"presets": [

"es2015"
],

Creates the npm script for building
the assets with watch mode

Adds a JSX plug-in
for Babel

Adds the ES6/ES2015-to-ES5
conversion (to support old
browsers)

Excludes dependencies
from Babel

Installs the history library to
be used with React Router

389Project structure and Webpack configuration

The next Babel config isn’t optional. It excludes some files from the Babel loader,

such as certain node_modules folders and files:

"ignore": [
"js/bundle.js",
"node_modules/**/*.js"

]
},

NOTE Next, you’ll define dependencies. You need to use the exact version
numbers shown here, because I can’t guarantee that future versions will work.
Given the speed at which React and Babel are developing, there will most
likely be changes. But there’s nothing wrong with using slightly older versions
to learn the concepts, as you’re doing in this book.

The devDependencies are for development, as the name suggests, and aren’t part of

production deployment. This is where you put Webpack, Webpack Dev Server, Babel,

and other packages. Please double-check that you’re using the exact versions listed

here:

...
 "devDependencies": {
 "babel-core": "6.3.21",
 "babel-loader": "6.4.1",
 "babel-plugin-transform-react-jsx": "6.3.13",
 "babel-preset-es2015": "6.3.13",
 "history": "4.0.0",
 "react": "15.5.4",
 "react-addons-test-utils": "15.2.1",
 "react-dom": "15.5.4",
 "react-router": "2.8.0",
 "webpack": "2.4.1",
 "webpack-dev-server": "1.14.0"
 }
}

Now that you’ve defined the project dependencies, you need to set up the Webpack build

process so you can use ES6 and transform JSX. To do this, create the file webpack.config.js

in the root directory, with the following code (ch18/nile/webpack.config.js).

module.exports = {
entry: "./jsx/app.jsx",
output: {
path: __dirname + '/js',
filename: "bundle.js"

},
devtool: '#sourcemap',
stats: {

Listing 18.2 Webpack configuration for the Nile store

390 CHAPTER 18 Project: Building a bookstore with React Router

colors: true,
reasons: true

},
module: {
loaders: [

{
test: /\.jsx?$/,
exclude: /(node_modules)/,
loader: 'babel-loader'

}
]

}
}

Run npm i (short for npm install), and you’re finished with the setup. Next, you’ll

create an HTML file that will hold skeleton <div> elements for React components.

18.2 The host HTML file

The HTML for this project is very basic. It has a container with the ID content and

includes js/bundle.js (ch18/nile/index.html).

<!DOCTYPE html>
<html>

<head>
<link href="css/bootstrap.css" type="text/css" rel="stylesheet"/>

</head>
<body>
<div class="container-fluid">

<div id="content" class=""></div>
</div>
<script src="js/bundle.js"></script>

</body>
</html>

Now you can do a quick test to see whether the build and development processes

work:

1 Install all the dependencies with $ npm install. Do this just once.

2 Put console.log('Hey Nile!') in jsx/app.jsx.

3 Run the app with $ npm run build. You can leave it running, because the -w will

rebuild the file on changes.

4 Start your local web server from the project root. You can use node-static or

webpack-dev-server, which you included in package.json.

5 Open the browser at http://localhost:8080.

6 Open the browser console (such as Chrome DevTools). You should see the

“Hey Nile!” message.

Listing 18.3 Host HTML file

391Creating components

18.3 Creating components

Onward to building the app, assuming you were able to see the message. You’ll begin

by importing the modules using ES6 modules and destructuring. Simply put, destruc-

turing is a way to define a variable from an object by using the same name as one of the

object’s properties. For example, if you want to import accounts from user.accounts

and declare accounts (see the repetition?), then you can use {accounts} = user. If

you’re not sure about destructuring, refer to the ES6 cheatsheet in appendix E.

18.3.1 Main file: app.jsx

The first file to write is app.jsx, where you set up the main imports, book information,

and routes. Minus the component code, which we’ll get to in a moment, app.jsx looks

like this (ch18/nile/jsx/app.jsx).

const React = require('react')
const ReactDOM = require('react-dom')
const { hashHistory,

Router,
Route,
IndexRoute,
Link,
IndexLink

} = require('react-router')

const Modal = require('./modal.jsx')
const Cart = require('./cart.jsx')
const Checkout = require('./checkout.jsx')
const Product = require('./product.jsx')

const PRODUCTS = [
{ id: 0, src: 'images/proexpress-cover.jpg',
title: 'Pro Express.js', url: 'http://amzn.to/1D6qiqk' },

{ id: 1, src: 'images/practicalnode-cover.jpeg',
title: 'Practical Node.js', url: 'http://amzn.to/NuQ0fM' },

{ id: 2, src: 'images/expressapiref-cover.jpg',
title: 'Express API Reference', url: 'http://amzn.to/1xcHanf' },

{ id: 3, src: 'images/reactquickly-cover.jpg',
title: 'React Quickly',
url: 'https://www.manning.com/books/react-quickly'},

{ id: 4, src: 'images/fullstack-cover.png',
title: 'Full Stack JavaScript',
url: 'http://www.apress.com/9781484217504'}

]

const Heading = () => {
return <h1>Nile Book Store</h1>

}

const Copy = () => {

Listing 18.4 Main app file

Imports the
hash history

Imports objects
from React Router

Imports
components

A small array of book data so
you don’t need to work with
a database in this example

Both of these components are
implemented as stateless.

392 CHAPTER 18 Project: Building a bookstore with React Router

return <p>Please click on a book to view details in a modal. You can

➥ copy/paste the link of the modal. The link will open the book on a

➥ separate page.</p>
}

class App extends React.Component {
...

}

class Index extends React.Component {
...

}

let cartItems = {}
const addToCart = (id) => {

if (cartItems[id])
cartItems[id] += 1

else
cartItems[id] = 1

}

ReactDOM.render((
<Router history={hashHistory}>
<Route path="/" component={App}>

<IndexRoute component={Index}/>
<Route path="/products/:id" component={Product}

addToCart={addToCart}
products={PRODUCTS} />

<Route path="/cart" component={Cart}
cartItems={cartItems} products={PRODUCTS}/>

</Route>
<Route path="/checkout" component={Checkout}

cartItems={cartItems} products={PRODUCTS}/>
</Router>

), document.getElementById('content'))

After you import everything at the top of the file, you hardcode the products into an

array; each object has id, src, title, and url. Obviously, in the real world you’d get

this data from the server, not have it in the browser JavaScript file:

const PRODUCTS = [
{ id: 0, src: 'images/proexpress-cover.jpg',
title: 'Pro Express.js', url: 'http://amzn.to/1D6qiqk' },

{ id: 1, src: 'images/practicalnode-cover.jpeg',
title: 'Practical Node.js', url: 'http://amzn.to/NuQ0fM' },

{ id: 2, src: 'images/expressapiref-cover.jpg',
title: 'Express API Reference', url: 'http://amzn.to/1xcHanf' },

{ id: 3, src: 'images/reactquickly-cover.jpg',
title: 'React Quickly',
url: 'https://www.manning.com/books/react-quickly'},

{ id: 4, src: 'images/fullstack-cover.png',
title: 'Full Stack JavaScript',
url: 'http://www.apress.com/9781484217504'}

]

The cartItems object holds the
current items in the shopping
cart. It’s empty initially.

393Creating components

You implement the next component as stateless using ES6 fat arrows. Why not have it

as an <h1> in a render? Because doing it this way, you can use it on multiple screens.

You use the same stateless style for Copy. It’s just static HTML, so you don’t need any-

thing extra, not even properties:

const Heading = () => {
return <h1>Nile Book Store</h1>

}

const Copy = () => {
return <p>Please click on a book to view details in a modal. You can

➥ copy/paste the link of the modal. The link will open the book on a

➥ separate page.</p>
}

The two main components, App and Index, come next, followed by the cartItems

object, which holds the current items in the shopping cart. It’s empty initially. addTo-

Cart() is a simple function—in a server-side version, you’d use Redux to persist the

data to the server and sessions so a user could come back to the shopping cart later:

let cartItems = {}
const addToCart = (id) => {

if (cartItems[id])
cartItems[id] += 1

else
cartItems[id] = 1

}

Finally, here’s the ReactDOM.render() method you use to mount the Router compo-

nent. You need to pass the history library to React Router. As I mentioned earlier, it

can be the browser or hash history (this project is using the latter):

ReactDOM.render((
<Router history={hashHistory}>

<Route path="/" component={App}>
<IndexRoute component={Index}/>
<Route path="/products/:id" component={Product}

addToCart={addToCart}
products={PRODUCTS} />

<Route path="/cart" component={Cart}
cartItems={cartItems} products={PRODUCTS}/>

</Route>
<Route path="/checkout" component={Checkout}
cartItems={cartItems} products={PRODUCTS}/>

</Router>
), document.getElementById('content'))

Uses the Index component
in IndexRoutePasses a

method to add
the book to the

shopping cart

Passes a list of
items in the

cart and a list
of all products

as cartItems
and products

properties Defines Checkout
outside of App so the
header isn’t rendered

394 CHAPTER 18 Project: Building a bookstore with React Router

For the /products/:id route, the Product component route gets the addToCart()

function to facilitate buying a book. The function will be available in this.props

.route.addToCart because whatever property you pass to Route will be available in

this.props.route.NAME in the component. For example, products will become

this.props.route.products in Product:

<Route path="/products/:id" component={Product} addToCart={addToCart}
products={PRODUCTS} />

The /checkout route is outside of App, so it doesn’t have a header (see figure 18.4). If

you recall, path and the route structure can be independent:

<Route path="/checkout" component={Checkout}
cartItems={cartItems} products={PRODUCTS}/>

In this case, by putting Checkout outside of App, Checkout isn’t App’s child. You can

click Back to navigate back to the app from the invoice/checkout screen.

THE APP COMPONENT

Now you can implement the App component! It’s the main component because it’s

the entry point for Webpack and because it provides the layout for most of the views;

renders child components such as Product, the product list, and Cart; and shows a

modal dialog. Remember ReactDOM.render()? Here’s the gist, which shows that App

is the root component of the app:

ReactDOM.render((
<Router history={hashHistory}>
<Route path="/" component={App}>

<IndexRoute component={Index}/>
<Route path="/products/:id" component={Product} .../>

Figure 18.4 An invoice

shouldn’t have the header

shown on other views.

App is the granddaddy of
Product, Cart, and Index.

395Creating components

<Route path="/cart" component={Cart} .../>
</Route>
// ...

</Router>
), document.getElementById('content'))

Unlike the stateless components, which were just functions, this component is the real

deal (ch18/nile/jsx/app.jsx).

class App extends React.Component {
componentWillReceiveProps(nextProps) {
this.isModal = (nextProps.location.state &&

nextProps.location.state.modal)
if (this.isModal &&

nextProps.location.key !== this.props.location.key) {
this.previousChildren = this.props.children

}
}
render() {
console.log('Modal: ', this.isModal)
return (

<div className="well">
<Heading/>
<div>

{(this.isModal) ? this.previousChildren :
this.props.children}

{(this.isModal)?
<Modal isOpen={true} returnTo=

{this.props.location.state.returnTo}>
{this.props.children}

</Modal> : ''
}

</div>
</div>

)
}

}

Recall that componentWillReceiveProps() takes the following properties as its argu-

ment. This method is a good place to determine whether this view is modal:

class App extends React.Component {
componentWillReceiveProps(nextProps) {
this.isModal = (nextProps.location.state &&

nextProps.location.state.modal)

The following condition checks whether you’re on a modal screen or a nonmodal screen.

If it’s modal, you assign children as previous children. The isModal Boolean determines

Listing 18.5 App component

Uses the state
passed in Link
(implemented
in Route)

Saves the children
in previousChildren
to render

Displays the content of old
children (home page) if
modal; otherwise, displays
children defined in the
Router structure

Displays a modal
with book details

396 CHAPTER 18 Project: Building a bookstore with React Router

whether the screen is modal based on state, which comes from the location property

set in the Link element (you’ll see an example in the Index component):

if (this.isModal &&
nextProps.location.key !== this.props.location.key) {
this.previousChildren = this.props.children

}
}

In the render() function, note that it doesn’t matter whether Heading is just a func-

tion (stateless component). You can render it like any other React component:

render() {
console.log('Modal: ', this.isModal)
return (

<div className="well">
<Heading/>

And the ternary expression renders either this.previousChildren or this.props

.children. React Router populates this.props.children from other nested

routes/components, such as Index and Product. Remember that App is used by

almost all of the app’s screens. By default, you want to render this.props.children

when working with React Router:

<div>
{(this.isModal) ? this.previousChildren: this.props.children}

If you didn’t have the isModal condition, and you output this.props.children every

time, then when you clicked a book image to open the modal, you’d always see the

same content, as shown in figure 18.5. Obviously, this behavior isn’t what you intend.

For this reason, you render the previous children, which in the case of a modal win-

dow is the home page. You can reuse a modal link with state.modal equal to true

(shown later, in the Index component). As a result, you’ll see the modal on top of the

current context.

 Finally, you can render the modal in another ternary expression. You’re passing

isOpen and returnTo:

{(isModal)?
<Modal isOpen={true} returnTo={this.props.location.state.returnTo}>

{this.props.children}
</Modal> : ''

}
</div>

</div>
)

}
}

397Creating components

THE INDEX COMPONENT

Continuing with nile/jsx/app.jsx, the next component is the home page. If you’ll

recall, it shows the full list of books. The code is shown next (ch18/nile/jsx/app.jsx).

class Index extends React.Component {
render() {
return (

<div>
<Copy/>
<p><Link to="/cart" className="btn btn-danger">Cart</Link></p>
<div>

{PRODUCTS.map(picture => (
<Link key={picture.id}

to={{pathname: `/products/${picture.id}`,
state: { modal: true,

Listing 18.6 Index component for the home page

Figure 18.5 If you don’t check for isModal and use previousChildren, the list of books isn’t shown.

Adds the link to the
shopping cart with Link

Uses ES6 interpolation
(string template) to
create a product URL

Shows a modal
window

398 CHAPTER 18 Project: Building a bookstore with React Router

returnTo: this.props.location.pathname }
}

}>

</Link>
))}

</div>
</div>

)
}

}

In the map() iterator, you render links to the book modals. These links will open in a

separate, nonmodal view when you navigate to them directly:

{PRODUCTS.map(picture => (
<Link key={picture.id}

to={{pathname: `/products/${picture.id}`,
state: { modal: true,

returnTo: this.props.location.pathname }
}

}>

You can pass any property to the component associated with the /products/:id route

(that is, Product and its parent, App). The properties are accessible in this.props

.location.NAME, where NAME is the name of the property. You used state.modal ear-

lier, in the Modal component.

 The tag uses the src attribute to render the book image:

</Link>

))}
</div>

</div>
)

}
}

That’s it for the app.jsx file. The next component to implement is the Cart compo-

nent; it will live in its own file, because it’s not closely related to the application the

way App is a layout of the bookstore.

18.3.2 The Cart component

The /cart route, rendered by Cart, displays the list of books and their quantity in the

shopping cart, as shown in figure 18.6. The Cart component uses cartItems to get

the list of books and their quantity. Notice the ES6 style for the render() function

(nile/jsx/cart.jsx).

399Creating components

const React = require('react')
const {

Link
} = require('react-router')

class Cart extends React.Component {
render() {
return <div>

{(Object.keys(this.props.route.cartItems).length == 0) ?
<p>Your cart is empty</p> : ''

}

{Object.keys(this.props.route.cartItems).map((item,

index,
list)=>{
return <li key={item}>

{this.props.route.products[item].title}
- {this.props.route.cartItems[item]}

})}

<Link to="/checkout"

className="btn btn-primary">
Checkout

</Link>
<Link to="/" className="btn btn-info">

Home
</Link>

</div>
}

}

module.exports = Cart

Listing 18.7 Cart component

Iterates and
renders each

item in a
shopping cart

Adds navigation to the
checkout, which displays
a print-ready invoice

Adds navigation to the
storefront to let the user
make more purchases

Figure 18.6 Shopping cart

400 CHAPTER 18 Project: Building a bookstore with React Router

Cart uses this.props.route.products, which is a list of products. This works

because in app.js, you defined the route property:

<Route path="/cart" component={Cart}
cartItems={cartItems} products={PRODUCTS}/>

If you’re using Redux (chapter 14), you won’t need to manually pass properties such

as products, because Provider will populate the data store in children automatically.

18.3.3 The Checkout component

Next is Checkout, shown in figure 18.7. This is the only component outside the App

route. To refresh your memory, this is the routing from app.js:

ReactDOM.render((
<Router history={hashHistory}>
<Route path="/" component={App}>

<IndexRoute component={Index}/>
<Route path="/products/:id" component={Product}

addToCart={addToCart}
products={PRODUCTS} />

<Route path="/cart" component={Cart}
cartItems={cartItems} products={PRODUCTS}/>

</Route>
<Route path="/checkout" component={Checkout}

cartItems={cartItems} products={PRODUCTS}/>
</Router>

), document.getElementById('content'))

As you can see, App and Checkout are on the same level of the hierarchy. Thus, when

you navigate to /checkout, the App route is not triggered. There’s no layout. (Interest-

ingly, it’s possible to nest the URLs but keep the components out of the nested struc-

ture: for example, by setting /cart/checkout. You won’t do that here, though.)

App route:
main layout

Checkout route is
outside of the App route

Figure 18.7 Checkout

doesn’t need a header.

401Creating components

The print-ready invoice uses a Twitter Bootstrap table and table-bordered styles.

Again, you use ES6’s const (remember, object properties can change) and function

syntax (nile/jsx/checkout.jsx).

const React = require('react')
const {

Link
} = require('react-router')

class Checkout extends React.Component {
render() {
let count = 0
return <div><h1>Invoice</h1><table className="table table-bordered">

<tbody>
{Object.keys(this.props.route.cartItems).map((item, index,

list)=>{
count += this.props.route.cartItems[item]
return <tr key={item}>

<td>{this.props.route.products[item].title}</td>
<td>{this.props.route.cartItems[item]}</td>

</tr>
})}

</tbody></table><p>Total: {count}</p></div>
}

}

module.exports = Checkout

Now you need to implement the Modal component.

18.3.4 The Modal component

This component renders its children in a modal dialog. Recall that in App, the code

uses Modal like this:

{(this.isModal) ?
<Modal isOpen={true} returnTo={this.props.location.state.returnTo}>
{this.props.children}

</Modal> : ''
}

Modal takes children from App’s this.props.children, which in turn is defined in

app.js, in <Route>. Here’s a reminder of the routing structure:

ReactDOM.render((
<Router history={hashHistory}>
<Route path="/" component={App}>

<IndexRoute component={Index}/>
<Route path="/products/:id" component={Product}

Listing 18.8 Checkout component

Iterates
 and renders

each item
 in the

shopping
cart

Uses a list of
products passed
in the route to
pull a title

Exports the class

402 CHAPTER 18 Project: Building a bookstore with React Router

addToCart={addToCart}
products={PRODUCTS} />

<Route path="/cart" component={Cart}
cartItems={cartItems} products={PRODUCTS}/>

</Route>
<Route path="/checkout" component={Checkout}

cartItems={cartItems} products={PRODUCTS}/>
</Router>

), document.getElementById('content'))

This is how you can view a product page both as a standalone and as a modal. Compo-

nents nested under the App route are its children, depending on the URL

(nile/jsx/modal.jsx).

const React = require('react')
const {

Link
} = require('react-router')

class Modal extends React.Component {
constructor(props) {
super(props)
this.styles = {

position: 'fixed',
top: '20%',
right: '20%',
bottom: '20%',
left: '20%',
width: 450,
height: 400,
padding: 20,
boxShadow: '0px 0px 150px 130px rgba(0, 0, 0, 0.5)',
overflow: 'auto',
background: '#fff'

}
}
render() {
return (

<div style={this.styles}>
<p>

<Link to={this.props.returnTo}>
Back

</Link>
</p>
{this.props.children}

</div>
)

}
}

module.exports = Modal

Listing 18.9 Modal component

Defines
styles
 as an

instance
attribute

of the
class

Uses a fixed position
(along with top, right,
left, bottom) to float the
modal in the middle in a
detached mode

Notice the
camelCase for
boxShadow,
which in CSS is
box-shadow.

Applies styles to
make a modal view

403Creating components

The modal window displays an individual Product component because that’s what’s

nested under App in routing and because the Product route has the URL path

/product/:id, which you used along with state set to modal true in Index (product list).

18.3.5 The Product component

The Product component uses the property from its route to trigger actions

(this.props.route.addToCart). The addToCart() method in app.js puts a specific

book in the shopping cart (if you’re using Redux, then this dispatches the action).

You trigger addToCart() with the browser onClick event handler and a local method

in Product called handleBuy(), which triggers the method addToCart from app.js. To

summarize: onClick this.handleBuy this.props.route.addToCart addTo-

Cart() (app.js). As a reminder, addToCart() is as follows:

let cartItems = {}
const addToCart = (id) => {

if (cartItems[id])
cartItems[id] += 1

else
cartItems[id] = 1

}

Of course, if you’re using Redux or Relay, then you’ll use their methods. This example

keeps things simple with a plain array acting as a data store and a single method.

 Now let’s look at the Product component itself. As always, you start by importing

React and defining the class; then you take care of the event and render. Here’s the

full code for Product (nile/jsx/product.jsx) with the most interesting parts noted.

const React = require('react')
const {

Link
} = require('react-router')

class Product extends React.Component {
constructor(props) {
super(props)
this.handleBuy = this.handleBuy.bind(this)

}
handleBuy (event) {
this.props.route.addToCart(this.props.params.id)

}
render() {
return (

<div>
<img src={this.props.route.products[

➥ this.props.params.id].src}
style={{ height: '80%' }} />

<p>{this.props.route.products[this.props.params.id].title}</p>

Listing 18.10 Individual product information

Binds the function to
make sure you have the
proper value of this

Passes the book ID to
the function in app.jsx

Pulls the image path and
filename from the list of
products using this book’s ID

404 CHAPTER 18 Project: Building a bookstore with React Router

<Link
to={{

pathname: `/cart`,
state: { productId: this.props.params.id}

}}
onClick={this.handleBuy}
className="btn btn-primary">

Buy
</Link>

</div>
)

}
}

module.exports = Product

You can also send a state to Cart in the Link component:

<Link
to={{
pathname: `/cart`,
state: { productId: this.props.params.id}

}}
onClick={this.handleBuy}
className="btn btn-primary">
Buy

</Link>

Recall that Product is used by the modal indirectly: Modal doesn’t render Product.

Instead, Modal uses this.props.children, which has Product. Thus, Modal can be

considered a passthrough component. (See chapter 8 for more about this.props

.children and passthrough components that use it.)

18.4 Launching the project

That’s all for the bookstore. You’ve used some ES6 features and passed around states

with React Router. Now, run the project by building it with npm run build, starting a

local web server (WDS or node-static), and navigating to http://localhost:8080/nile,

assuming you have a static web server running in a parent folder that has a nile folder

(the URL path depends on where you launched the static web server).

 You should see the home page with a grid of book covers. When you click a cover,

a modal window appears; click the Buy button to add the book to the cart, which

appears on the /cart and /checkout pages. Enjoy!

18.5 Homework

For bonus points, do the following:

 Abstract (copy/paste) Index and App into separate files, away from app.js, and

rename App as Layout.

 Move the data to persistent storage such as MongoDB or PostgreSQL.

Triggers the function
when the Buy button
is clicked

405Summary

 Change the hash URL to hash-less by using a history API alongside the custom

Express server (which you’ll need to implement). Refer to the Netflix clone

with hash-less URLs in chapter 15 for inspiration.

 Add unit tests for Product and Checkout using Jest.

Submit your code in a new folder under ch18 as a pull request to this book’s GitHub

repository: https://github.com/azat-co/react-quickly/.

18.6 Summary

 The Link component is imported from react-router and can be used to pass

state, as in <Link to={{pathname: '/product', state: { modal: true }}}>.

 The React Router state is available in this.props.location.state.

 You can pass properties defined in <Route name={value}>, and they’ll be avail-

able in this.props.route.name.

406

Project: Checking
 passwords with Jest

This project focuses on building a UI, working with modules, and testing with Jest,

along with other React-related techniques such as component composition, ES6

syntax, state, properties, and so on. Recall that chapter 16 dealt with testing; you

used a password widget as an example of unit testing and UI testing. In this project,

you’ll build the widget itself to check, verify, and generate new passwords. Along

the way, I’ll explain testing again, here and there, in an expanded format.

 The widget has a Save button that’s disabled by default but becomes enabled when

the password is strong enough (according to the preset rules), as shown in figure 19.1.

In addition, the Generate button lets you create a strong (according to the criteria) pass-

word. As each rule is satisfied, it’s crossed out. There’s also a Show Password check box

that hides/shows the password, just as in most macOS interfaces (see figure 19.2).

This chapter covers

 Project structure and Webpack configuration

 The host HTML file

 Implementing a strong password module

 Creating Jest tests

 Implementing the Password component and UI

Watch this chapter’s introduction video by

scanning this QR code with your phone or going

to http://reactquickly.co/videos/ch19.

407

Figure 19.1 Password widget that lets you enter a password or autogenerate one that

meets the given strength criteria

Figure 19.2 The widget with some of the criteria fulfilled and the password visible

408 CHAPTER 19 Project: Checking passwords with Jest

The parent component is called Password, and the child components are listed here:

 PasswordInput—Input field for the password

 PasswordVisibility—Check box to toggle the password’s visibility

 PasswordInfo—List of criteria that must be met before you can save the password

 PasswordGenerate—Button to generate a password that satisfies all the criteria

The widget is built using a single parent component. You provide the password-

strength rules to the component as properties, so the component is highly customiz-

able. I’ll bet you can use it in your own apps with some customization!

NOTE To follow along with this project, you’ll need to install Node.js and
npm to compile JSX. This example also uses Webpack as a build tool and, of
course, Jest as the test engine. Appendix A covers how to install everything.

NOTE Because parts of this project were first introduced in chapter 16, the
source code is in the ch16 folder; you can find it at www.manning
.com/books/react-quickly and https://github.com/azat-co/react-quickly/
tree/master/ch16. You can also find some demos at http://reactquickly
.co/demos.

Let’s start by setting up the project.

19.1 Project structure and Webpack configuration

This is what the complete folder structure looks like. Begin by creating a new project

folder named password:

/password
/__tests__

generate-password.test.js
password.test.js

/css
bootstrap.css

/dist
bundle.js
bundle.js.map

/js
generate-password.js
rules.js

/jsx
app.jsx
password-generate.jsx
password-info.jsx
password-input.jsx
password-visibility.jsx
password.jsx

/node_modules
...

index.html
package.json
README.md
webpack.config.js

This folder holds all
the Jest test files.

Folder for files bundled
by Webpack

Entry
point for
the app

Library responsible
for generating
random passwords

Webpack
configuration file

409Project structure and Webpack configuration

The __tests__ folder is for Jest tests. The css folder contains my Twitter Bootstrap

theme, called Flatly (https://bootswatch.com/flatly). The js and jsx folders have

libraries and components, respectively. And js/generate-password.js is the library

responsible for generating random passwords.

 The dist folder contains the compiled JSX files with source maps. That’s where

Webpack will put the concatenated file and its source map. Here, dist is short for distri-

bution; it’s a commonly used name, along with js or build. I used it here to introduce

some variety and show you how to customize Webpack configs.

 Don’t forget that to avoid having to install each dependency with the exact version

manually, you can copy package.json from the following listing to the password folder

and then run npm install in it (ch16/password/package.json).

{
"name": "password",
"version": "2.0.0",
"description": "",
"main": "index.html",
"scripts": {
"test": "jest",
"test-watch": "jest --watch",
"build-watch": "./node_modules/.bin/webpack -w",
"build": "./node_modules/.bin/webpack"

},
"author": "Azat Mardan",
"license": "MIT",
"babel": {
"presets": [

"react"
]

},
"devDependencies": {
"babel-core": "6.10.4",
"babel-loader": "6.4.1",
"babel-preset-react": "6.5.0",
"jest-cli": "19.0.2",
"react": "15.5.4",
"react-test-renderer": "15.5.4",
"react-dom": "15.5.4",
"webpack": "2.4.1"

}
}

The interesting thing here is the scripts section, which you’ll use for testing, compi-

lation, and bundling:

"scripts": {
"test": "jest",
"test-watch": "jest --watch",

Listing 19.1 Dependencies and setup for the project

Creates an npm script
to build assets using
Webpack and watches
for changes

Uses Babel in Jest
for JSX support

Uses Jest as a local
module (recommended)

Uses react-test-renderer
for shallow rendering

410 CHAPTER 19 Project: Checking passwords with Jest

"build-watch": "./node_modules/.bin/webpack -w",
"build": "./node_modules/.bin/webpack"

},

Recall that in the Nile store in chapter 18, you used transform-react-jsx:

"babel": {
"plugins": [

"transform-react-jsx"
],

But in this project, you use the React preset. It’s just another way to accomplish the

same thing. You can use a preset or a plug-in. Presets are a more modern approach

and are used in more docs and projects.

 The test script (npm test) is for running Jest tests manually. Conversely, the test-

watch script keeps Jest running in the background. test-watch is launched with npm

run test-watch because only test and start don’t require run. You run test-watch

once, and Jest (in watch mode) will notice any source code changes and rerun the

tests. Here’s an example of the output:

PASS __tests__/password.test.js
PASS __tests__/generate-password.test.js

Test Suites: 2 passed, 2 total
Tests: 3 passed, 3 total
Snapshots: 0 total
Time: 1.502s
Ran all test suites.

Watch Usage
› Press o to only run tests related to changed files.
› Press p to filter by a filename regex pattern.
› Press t to filter by a test name regex pattern.
› Press q to quit watch mode.
› Press Enter to trigger a test run.

So far, you’ve defined the project dependencies. Next, you need to set up the

Webpack build process so you can transform JSX to JS. To do this, create the webpack

.config.js file in the root directory with the following code (ch16/password/

webpack.config.js).

module.exports = {
entry: './jsx/app.jsx',
output: {
path: __dirname + '/dist/',
filename: 'bundle.js'

},
devtool: '#sourcemap',

Listing 19.2 Webpack configuration

Sets an entry point for the project
(there can be multiple points)

Sets up the source maps to see the
correct source line numbers in DevTools

411The host HTML file

stats: {
colors: true,
reasons: true

},
module: {
loaders: [

{
test: /\.jsx?$/,
exclude: /(node_modules)/,
loader: 'babel-loader'

}
]

}
}

Now you can define configs to build your project in webpack.config.js. The entry

point is the app.js JSX file in the jsx folder, and the destination is the dist folder. Also,

configs will set the source maps and the Babel loader (to convert JSX into JS).

 The build will be called with ./node_modules/.bin/webpack, or with

./node_modules/.bin/webpack -w if you want the tool to monitor file changes. Yes,

with -w (watch), you can make Webpack rebuild on every file change—that is, each time

you click Save in Notepad (I don’t like IDEs). Watch is great for active development!

 You can create more than one webpack.config.js by specifying a different filename

with --config:

$./node_modules/.bin/webpack --config production.config.js

Each config file can use a new script in package.json for convenience.

 The bottom line is that Webpack is easy and fun to work with because it supports

CommonJS/Node modules by default. There’s no need for Browserify or any other

module loaders. With Webpack, it’s like writing a Node program for browser

JavaScript!

19.2 The host HTML file

Next, create the index.html file. It has a container with ID content and includes

dist/bundle.js (ch16/password/index.html).

<!DOCTYPE html>
<html>

<head>
<link href="css/bootstrap.css" rel="stylesheet" type="text/css"/>

</head>

<body class="container">
<h1>Password Input Widget</h1>
<div id="password"></div>

Listing 19.3 Host HTML file

Applies Babel, which will use
Babel configs from package.json

412 CHAPTER 19 Project: Checking passwords with Jest

<script src="dist/bundle.js" ></script>
</body>

</html>

Now you should be set up and ready to start developing. It’s a good idea to test in

increments during development so the area in which you look for bugs is as small as

possible. So, perform a quick test to see if the setup is working correctly, just as you did

in chapter 18. Do something along these lines:

1 Install all the dependencies with npm install. Do this just once.

2 Put console.log('Painless JavaScript password!') into jsx/app.jsx.

3 Run the app with npm start. You can leave it running, because -w will rebuild

the file when there are changes.

4 Start a local web server from the project root.

5 Open the browser at http://localhost:8080.

6 Open the browser console (such as Chrome DevTools). You should see the

“Painless JavaScript password!” message.

19.3 Implementing a strong password module

The strong-password module is a generate-password.js file sitting in password/js. The

test for the file will be in password/__tests__/generate-password.test.js. This module

will return random passwords when invoked. The passwords will contain a good mix

of different types of characters:

 Special characters—!@\#$%^&*()_+{}:"<>?\|[]\',./`~

 Lowercase—abcdefghijklmnopqrstuvwxyz

 Uppercase—ABCDEFGHIJKLMNOPQRSTUVWXYZ

 Numbers—0123456789

These categories, along with length and randomness, will ensure that the password is

secure enough. Using TDD/BDD, let’s implement the tests first.

19.3.1 The tests

Begin with the tests in generate-password.test.js. Remember that you store them in the

__tests__ folder so Jest can find them (ch16/password/__tests__/generate-

password.test.js).

const generatePassword = require('../js/generate-password.js')
const pattern = /^[A-Za-z0-9\!\@\#\$\%\^\&*\(\)_\+\{\}\:\"\<\>\?\\|\

➥ [\]\/'\,\.\`\~]{8,16}$/

describe('method generatePassword', ()=>{
let password, password2

Listing 19.4 Tests for the password module

Loads the bundled
application

Defines a RegEx pattern
for a password that
meets all criteria

413Implementing a strong password module

it('returns a generated password of the set pattern', ()=>{
password = generatePassword()
expect(password).toMatch(pattern)

})

it('return a new value different from the previous one', ()=>{
password2 = generatePassword()
expect(password2).toMatch(pattern)
expect(password2).not.toEqual(password)

})

})

You start by declaring the password variable and importing generate-password.js. The

regular expression checks the content and length of the password. It’s not perfect,

because you don’t check that each password has at least one of those characters, but

it’ll do for now:

let password,
password2,
pattern = /^[A-Za-z0-9\!\@\#\$\%\^\&*\(\)_\+\{\}\:\"\<\>\?\\|

➥ \[\]\/'\,\.\`\~]{8,16}$/

Write in the test suite describe the noun method generatePassword. That’s what

you’re going to test: it’s the function exported in the generate-password.js module.

 Implement the test suite it with the code to unit-test via the BDD-style expect state-

ments, as described in chapter 16. At a minimum, check against a regular-expression

pattern for the password:

describe('method generatePassword', () => {
it('returns a generated password of the set pattern', ()=>{
password = generatePassword()
expect(password).toMatch(pattern)

})
it('returns a new value different from the previous one', ()=>{
password2 = generatePassword()
expect(password2).not.toEqual(password)

})
})

What if the password isn’t different each time you invoke generatePassword()? What

if it’s hardcoded in generate-password.js? That would be bad! So, the second test suite

expects the second generated password to be different.

19.3.2 The code

You’ll implement a strong-password module in js/generate-password.js so you can

TDD/BDD it right away—that is, you’ll write the test first and only then write the code.

Here’s a versatile password generator that uses three sets of characters to satisfy the

strong-password criteria:

Tests that the newly generated
password matches the pattern

Tests that invoking the method
returns a new password

414 CHAPTER 19 Project: Checking passwords with Jest

const SPECIALS = '!@#$%^&*()_+{}:"<>?\|[]\',./`~'
const LOWERCASE = 'abcdefghijklmnopqrstuvwxyz'
const UPPERCASE = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
const NUMBERS = '0123456789'
const ALL = `${SPECIALS}${LOWERCASE}${UPPERCASE}${NUMBERS}`

const getIterable = (length) => Array.from({length},
(_, index) => index + 1)

const pick = (set, min, max) => {
let length = min
if (typeof max !== 'undefined') {
length += Math.floor(Math.random() * (max - min))

}
return getIterable(length).map(() => (
set.charAt(Math.floor(Math.random() * set.length))

)).join('')
}

const shuffle = (set) => {
let array = set.split('')
let length = array.length
let iterable = getIterable(length).reverse()
let shuffled = iterable.reduce((acc, value, index) => {
let randomIndex = Math.floor(Math.random() * value)
[acc[value -1], acc[randomIndex]] = [acc[randomIndex], acc[value - 1]]
return acc

}, [...array])
return shuffled.join('')

}

module.exports = () => {
let password = (pick(SPECIALS, 1)
+ pick(LOWERCASE, 1)
+ pick(NUMBERS, 1)
+ pick(UPPERCASE, 1)
+ pick(ALL, 4, 12))

return shuffle(password)
}

The exported function (assigned to module.exports) calls the shuffle() method,

which randomly moves characters around in the string. shuffle() takes the password

generated by pick(), which uses sets of characters to make sure the generated pass-

word includes at least one of a certain group of characters (numbers, uppercase let-

ters, specials, and so on). The final part of the password consists of more random

elements from the union set ALL.

 You can run the unit test for password/__tests__/generate-password.js with the

command jest __tests__/generate-password.test.js or npm test __tests__/

generate-password.test.js executed from the project root (password folder). It

should pass with a message similar to the following:

Adds +1 to avoid 0
as a value, and uses
an implicit return

Defines the pick function,
which returns chars from a
set between min and max

Creates an iterable element
with empty strings

Shuffles chars to
get randomness

Reverses the iterable
to get a value from
max to min

Applies the reducer to
get the shuffled array

Defines the rules to
satisfy the widget

415Implementing the Password component

jest __tests__/generate-password.test.js

PASS __tests__/generate-password.test.js
method generatePassword

✓ returns a generated password of the set pattern (4ms)
✓ return a new value different from the previous one (2ms)

Test Suites: 1 passed, 1 total
Tests: 2 passed, 2 total
Snapshots: 0 total
Time: 1.14s
Ran all test suites matching "__tests__/generate-password.test.js".

19.4 Implementing the Password component

The next logical thing is to work on the main component, Password. According to

TDD, you again must start with a test: a UI test, in this case, because you want to test

behavior like clicking.

19.4.1 The tests

Create a UI test file called __tests__/password.test.js. We already covered this file in

chapter 16, so I’ll present the full example here with some comments (ch16/password/

__tests__/password.test.js).

describe('Password', function() {
it('changes after clicking the Generate button', (done)=>{
const TestUtils = require('react-addons-test-utils')
const React = require('react')
const ReactDOM = require('react-dom')
const Password = require('../jsx/password.jsx')

const PasswordGenerate = require('../jsx/password-generate.jsx')
const PasswordInfo = require('../jsx/password-info.jsx')
const PasswordInput = require('../jsx/password-input.jsx')
const PasswordVisibility = require('../jsx/password-visibility.jsx')

const fD = ReactDOM.findDOMNode

let password = TestUtils.renderIntoDocument(<Password
upperCase={true}
lowerCase={true}
special={true}
number={true}
over6={true}
/>

)

let rules = TestUtils.scryRenderedDOMComponentsWithTag(password,
'li')

expect(rules.length).toBe(5)

Listing 19.5 Spec for the Password component

Includes the
libraries

Creates a React component thanks to JSX
 support from the babel-jest package (part of Jest:

https://github.com/facebook/jest/tree/master/
packages/babel-jest)

Gets the list items ()

416 CHAPTER 19 Project: Checking passwords with Jest

expect(fD(rules[0]).textContent).toEqual('Must have

➥ at least one upper-case character')
let generateButton = TestUtils.findRenderedDOMComponentWithClass(password,

➥ 'generate-btn')
expect(fD(rules[1]).firstChild.nodeName.toLowerCase()).

➥ toBe('#text')
TestUtils.Simulate.click(fD(generateButton))
expect(fD(rules[1]).firstChild.nodeName.toLowerCase()).

➥ toBe('strike')
done()

})
})

You can extend this test case to check that all the properties and rules pass; this is

homework (see the “Homework” section at the end of this chapter for more ideas).

It’s a good idea to have another suite and provide a different mix of properties, and

then test for that as well.

 That’s it! Your test should fail (npm test or jest) with an error:

Error: Cannot find module '../jsx/password.jsx' from 'password.test.js'

That’s normal for test-driven development because we write tests before apps. The

main thing you need to do now is to implement the Password component.

19.4.2 The code

Next, you’ll create the Password component with some initial state. The state variables

are as follows:

 strength—The object with the strength “meter” (that is, the set of rules, each

of which is set to true or false depending on whether the criterion is met)

 password—The current password

 visible—Whether the password input field is visible

 ok—Whether the password meets all the rules and you can allow the user to

save it (enables the Save button)

Imagine that a few days after you implement this widget, a developer from another

team wants to use your component but with slightly stricter password criteria. The best

approach is to abstract (a fancy word for copy and paste) the code with the password cri-

teria (rules) into a separate file. You’ll do this before proceeding with password.jsx.

 Create a file called rules.js (ch16/password/js/rules.js). This file will implement

password rules that you can use in password.jsx to perform validation and show warn-

ing messages. Keeping the rules separate will make it straightforward to change, add,

or remove rules in the future.

Checks that the
text of the first
 matches the
expected value

Gets the button that generates passwords

Checks to see that the second criterion
isn’t satisfied—that is, that the first
child is text, not <strike>

Checks that the
second criterion
is satisfied

Clicks Generate

417Implementing the Password component

module.exports = {
upperCase: {
message: 'Must have at least one upper-case character',
pattern: /([A-Z]+)/

},
lowerCase: {
message: 'Must have at least one lower-case character',
pattern: /([a-z]+)/

},
special:{
message: 'Must have at least one special character (#$@!&%...)',
pattern: /([\!\@\#\$\%\^\&*\(\)_\+\{\}\:\"\<\>\?\\|\[\]\/'\,\.\`\~]+)/

},
number: {
message: 'Must have at least one number',
pattern: /([0-9]+)/

},
'over6': {
message: 'Must be more than 6 characters',
pattern: /(.{6,})/

}
}

Basically, you have a bunch of rules, each of which has the following:

 A key, such as over6

 A message, such as Must be more than 6 characters

 A regular-expression pattern, such as /(.{6,})/

Now, on to password.jsx. You need to do the following:

 Render with the upperCase, lowerCase, special, number, and over6 rules.

 Check that the rules have been rendered (length is 5).

 See that rule 1 isn’t satisfied.

 Click the Generate button.

 See that rule 2 is satisfied.

Let’s implement the component. You import dependencies and create the compo-

nent with initial state (ch16/password/jsx/password.jsx).

const React = require('react')
const ReactDOM = require('react-dom')
const generatePassword = require('../js/generate-password.js')

const rules = require('../js/rules.js')

const PasswordGenerate = require('./password-generate.jsx')
const PasswordInfo = require('./password-info.jsx')
const PasswordInput = require('./password-input.jsx')

Listing 19.6 Rules for password strength

Listing 19.7 Implementing the Password component

418 CHAPTER 19 Project: Checking passwords with Jest

const PasswordVisibility = require('./password-visibility.jsx')

class Password extends React.Component {
constructor(props) {
super(props)
this.state = {strength: {}, password: '', visible: false, ok: false}
this.generate = this.generate.bind(this)
this.checkStrength = this.checkStrength.bind(this)
this.toggleVisibility = this.toggleVisibility.bind(this)

}
...

}

Next, you implement a method to check for the password strength:

checkStrength(event) {
let password = event.target.value
this.setState({password: password})
let strength = {}

The following code block goes through each property (upperCase, over6, and so on)

and checks the current password using the regular-expression pattern in rules. If the

criterion is met, the property in the strength object is set to true:

Object.keys(this.props).forEach((key, index, list)=>{
if (this.props[key] && rules[key].pattern.test(password)) {

strength[key] = true
}

})

this.setState() is asynchronous, so you use a callback to provide logic that relies on

the updated state. In this case, you check that the number of properties in the

strength object (this.state.strength) is equal to the number of rules (props). It’s

a rudimentary check; checking each property in a loop would be a more robust solu-

tion, but this code works for now. You set ok to true if the numbers match (that is, if

all the rules for password strength are satisfied):

this.setState({strength: strength}, ()=>{
if (Object.keys(this.state.strength).length ==

Object.keys(this.props).length) {
this.setState({ok: true})

} else {
this.setState({ok: false})

}
})

The next method hides and shows the password field. This is a useful feature when

you’re generating a new password, because you may want to save the password (or

need help remembering it):

419Implementing the Password component

toggleVisibility() {
this.setState({visible: !this.state.visible}, ()=>{
})

}

Next is the generate() method, which creates random passwords using the js/generate-

password.js module. Setting visible to true ensures that users can see the newly

generated password. Right after the password is generated, you call checkStrength()

to check its strength. Typically, the conditions will be satisfied, and users will be able to

proceed by clicking Save:

generate() {
this.setState({visible: true, password: generatePassword()}, ()=>{

this.checkStrength({target: {value: this.state.password}})
)

}

In the render() function, Password processes the rules and renders a few other React

components:

 PasswordInput—Password input field (input)

 PasswordVisibility— Password visibility toggle (input with type checkbox)

 PasswordInfo—The list of rules for password strength (ul)

 PasswordGenerate—Password-generation button (button)

You begin by processing the rules and determining which of them are satisfied

(isCompleted). Instead of passing the context in _this or using the bind(this) pat-

tern, you use fat-arrow functions ()=>{}. There’s no big difference; choose one

approach or the other, and use it.

 Object.keys flattens your hash table into an array by giving you an array of keys of

that object. You can iterate over that array of keys with map() and construct a new

array with objects that have key, rule, and isCompleted:

render() {
var processedRules = Object.keys(this.props).map((key)=>{

if (this.props[key]) {
return {

key: key,
rule: rules[key],
isCompleted: this.state.strength[key] || false

}
}

})
// return ...

IMPLEMENTING PASSWORD’S RENDER() FUNCTION

Once your array of processed rules is ready, you can begin rendering the components.

Remember that for is a special word in JavaScript. That’s why you need to use class-

Name, not class (ch16/password/jsx/password.jsx).

420 CHAPTER 19 Project: Checking passwords with Jest

return (
<div className="well form-group col-md-6">

<label>Password</label>
<PasswordInput

name="password"
onChange={this.checkStrength}
value={this.state.password}
visible={this.state.visible}/>

<PasswordVisibility
checked={this.state.visible}
onChange={this.toggleVisibility}/>

<PasswordInfo rules={processedRules}/>
<PasswordGenerate onClick={this.generate}>

Generate
</PasswordGenerate>
<button className={'btn btn-primary' +

➥ ((this.state.ok)? '': ' disabled')}>
Save

</button>
</div>

)

Let’s cover the most important parts in more detail. PasswordInput is a controlled

component (for a detailed comparison between controlled and uncontrolled compo-

nents, see chapter 5). You listen on every change with the this.checkStrength call-

back, which uses e.target.value, so there’s no need for refs:

<PasswordInput name="password" onChange={this.checkStrength}

➥ value={this.state.password} visible={this.state.visible}/>

Similar to PasswordInput, PasswordVisibility is a controlled component, and the

event handler for change is this.toggleVisibility:

<PasswordVisibility checked={this.state.visible}

➥ onChange={this.toggleVisibility}/>

You pass the processedRules object to the list of rules, and the PasswordGenerate

button triggers this.generate:

<PasswordInfo rules={processedRules}/>
<PasswordGenerate onClick={this.generate}>Generate</PasswordGenerate>

The Save button is disabled and enabled based on the this.state.ok value. Don’t

forget the space before disabled, or you’ll get the btn-primarydisabled class instead

of two classes, btn-primary and disabled:

<button className={'btn btn-primary' +
((this.state.ok)? '': ' disabled')}>Save</button>

</div>
)

}})

Listing 19.8 Implementing render()

Checks password strength
on every change in the
password input field

Hides and shows the
password when the
check box changes

Generates a new password
when the Generate button
is clicked

421Implementing the Password component

The other components, in listings 19.9 (ch16/password/jsx/password-generate.jsx), 19.10

(ch16/password/jsx/password-input.jsx), and 19.11 (ch16/password/jsx/password-

visibility.jsx), are dumb components. They just render classes and pass properties.

const React = require('react')
class PasswordGenerate extends React.Component{

render() {
return (

<button {...this.props} className="btn generate-btn">
{this.props.children}</button>

)
}

}
module.exports = PasswordGenerate

const React = require('react')
class PasswordInput extends React.Component {

render() {
return (

<input className="form-control"
type={this.props.visible ? 'text' : 'password'}
name={this.props.name}
value={this.props.value}
onChange={this.props.onChange}/>

)
}

}

module.exports = PasswordInput

const React = require('react')
class PasswordVisibility extends React.Component {

render() {
return (

<label className="form-control">
<input className=""

type="checkbox"
checked={this.props.checked}
onChange={this.props.onChange}/> Show password

</label>
)

}
}

module.exports = PasswordVisibility

Listing 19.9 PasswordGenerate component

Listing 19.10 PasswordInput component

Listing 19.11 PasswordVisibility component

Controls the
component with
a property value

Triggers even on
the parent via
the property

422 CHAPTER 19 Project: Checking passwords with Jest

Let’s look at PasswordInfo for a moment (ch16/password/jsx/password-info.jsx). It

takes the processed rules array and iterates over that property. If isCompleted is

true, you add <strike> to the . <strike> is an HTML tag that applies a

strikethrough line to text. This is what you check for in the password.test.js test, too.

const React = require('react')
class PasswordInfo extends React.Component {

render() {
return (

<div>
<h4>Password Strength</h4>

{this.props.rules.map(function(processedRule, index, list){
if (processedRule.isCompleted)

return <li key={processedRule.key}>
<strike>{processedRule.rule.message}</strike>

else

return <li key={processedRule.key}>

➥ {processedRule.rule.message}
})}

</div>

)
}

}

module.exports = PasswordInfo

You’re finished with the password.jsx file! Now you have everything ready to rerun the

test. Don’t forget to recompile with npm run build or npm run build-watch. If you fol-

lowed everything to a T, you should see something like this after you run npm test:

Using Jest CLI v0.5.10
PASS __tests__/generate-password.test.js (0.03s)
PASS __tests__/password.test.js (1.367s)

2 tests passed (2 total)
Run time: 2.687s

Good job—you can pat yourself on the back!

19.5 Putting it into action

To see the widget in action, you need to do one more tiny step: create jsx/app.jsx,

which is an example file for the component. Here’s how to render the Password wid-

get in your app:

const React = require('react')
const ReactDOM = require('react-dom')

Listing 19.12 PasswordInfo component

Checks for rule
satisfaction via a property

Uses the text
provided in
rules.js via a
property

423Putting it into action

const Password = require('./password.jsx')

ReactDOM.render(<Password
upperCase={true}
lowerCase={true}
special={true}
number={true}
over6={true}/>,

document.getElementById('password'))

You can run the files like any other front-end app. I prefer node-static

(https://github.com/cloudhead/node-static), or you can see an online demo at

http://reactquickly.co/demos. Notice how the Save button becomes active when all

the rules are satisfied, as shown in figure 19.3.

Figure 19.3 The Save button is enabled when all the strength criteria are met.

CI and CD

The best software engineering practice doesn’t stop at writing and running tests

locally. The tests are much more valuable when combined with the deployment pro-

cess and automated. These processes, called continuous integration (CI) and contin-

uous deployment (CD), are great for speeding up and automating software delivery.

424 CHAPTER 19 Project: Checking passwords with Jest

19.6 Homework

For bonus points, try the following:

 Test any scenario you can think of: for example, enter only a lowercase charac-

ter (such as r), and see that the lowercase criterion has been satisfied but not

the other criteria.

 Sign up for a free account with a cloud SaaS CI provider (AWS, Travis CI, CircleCI,

and so on), and set up the project to run in the cloud CI environment.

Submit your code in a new folder under ch16 as a pull request to this book’s GitHub

repository: https://github.com/azat-co/react-quickly.

19.7 Summary

 Jest test files are stored in the __tests__ folder by convention.

 You can use regular or shallow rendering with either react-dom/test-utils or

react-test-renderer/shallow.

 Jest (v19) tests can be written using JSX because Jest will convert JSX automati-

cally.

 To enable automatic test reruns (recommended for development), use jest

--watch.

(continued)

I highly recommend setting up CI/CD for anything more than a prototype. There are

plenty of good software-as-a-service (SaaS) and self-hosted solutions out there.

With the tests in this project, setting up a CI/CD environment won’t take long. For

example, with AWS, Travis CI, or CircleCI, all you need to do is configure your proj-

ect in terms of the environment it should run in and then provide a test command

such as npm test. You can even integrate those SaaS CIs with GitHub so that you

and your team can see CI messages (pass, fail, how many failures, and where) on

GitHub pull requests.

Amazon Web Services offers its own managed services: CodeDeploy, CodePipeline,

and CodeBuild. For more information on these AWS services, refer to Node University:

https://node.university/p/aws-intermediate. If you prefer a self-hosted solution

instead of a managed solution, take a look at Jenkins (https://jenkins.io) and Drone

(https://github.com/drone/drone).

425

Project: Implementing
autocomplete with Jest,

 Express, and MongoDB

The goal of this project is first of all to combine many of the techniques you’ve

learned throughout this book, such as component composition, states, form ele-

ments, and testing, as well as how to fetch data from an API server and store and

how to implement a simple Express server and Universal React rendering. You’ve

already done most of these things in the book, but repetition is the mother of

learning—especially intermittent repetition!

This chapter covers

 Project structure and Webpack configuration

 Implementing the web server

 Adding the browser script

 Creating the server template

 Implementing the autocomplete component

Watch this chapter’s introduction video by

scanning this QR code with your phone or going

to http://reactquickly.co/videos/ch20.

426 CHAPTER 20 Project: Implementing autocomplete with Jest, Express, and MongoDB

In this chapter, you’ll build a well-rounded component and supply it with a back end.

This little project is close to the sort of real-life projects you’ll most likely perform on

the job.

 In a nutshell, this project will guide you through building an autocomplete compo-

nent that’s visually and functionally similar to the one in Slack (a popular messaging

app) and Google (a popular search engine), as shown in figure 20.1. For simplicity’s

sake, the widget will work with the names of rooms in a chat application.

 The autocomplete widget, shown in figure 20.2, has the following:

1 Input field—Always appears but is empty initially

2 List of options, filtered according to the entered characters—Appears when there’s at

least one match

3 Add button—Appears when there are no matches

Figure 20.1 In Slack, when you

start typing, the widget offers

matches.

Figure 20.2 Autocomplete

form with an empty field

427

Room names are filtered using the entered characters as the first characters of each

option. A simple comparison autocompletes the name of a room (see figure 20.3).

For example, if you have rooms named angular, angular2, and react, and you type angu,

then only angular and angular2 will be shown as a match, not the react option.

 What if there are no matches? There’s a way to add a new option using the Add but-

ton. For convenience, the Add button

is shown only when there are no

matches (see figure 20.4). This but-

ton lets you persist (save permanently

in the database) the new input.

 The new option is saved to the data-

base via an XHR call to the REST API.

You can use this new room name in

future matches (see figure 20.5), just

like the initial list of room names.

 To implement this autocomplete

widget, you need to do the following:

 Install dependencies.

 Set up the build process with

Webpack.

 Write tests using Jest.

 Implement an Express REST API

server that connects to Mongo-

DB and also acts as a static server

for the widget example.

 Implement an Autocomplete

React component.

 Implement the example using

Autocomplete and Handle-

bars.

Figure 20.3 Typing angu filters the matches and shows only angular and angular2.

Figure 20.4 The Add button is shown only when there

are no matches.

Figure 20.5 The room name has been saved and now

appears in the list.

428 CHAPTER 20 Project: Implementing autocomplete with Jest, Express, and MongoDB

You’ll render the React components on the server, test them with Jest, and make

AJAX/XHR requests with axios.

NOTE The source code for the examples in this chapter is at www.manning
.com/books/react-quickly and https://github.com/azat-co/react-quickly/
tree/master/ch20. You can also find some demos at http://
reactquickly.co/demos.

Let’s start by setting up the project.

20.1 Project structure and Webpack configuration

To give you an overview of the tech stack, in this project you’ll use the following tech-

nologies and libraries:

 Node.js and npm for compiling JSX and downloading dependencies such as

React

 Webpack as a build tool

 Jest as the test engine

 Express to act as a web server, and MongoDB accessed using the native MongoDB

Node.js driver to hold the autocomplete options1

 Handlebars for the layout

1 A cross-site scripting (XSS) attack is characterized by attackers injecting malicious code into legitimate websites
that users trust but that contain XSS vulnerabilities. For example, an attacker can post a message with some bad
code that includes <script> elements on a vulnerable forum that isn’t sanitizing and/or escaping the post
text. All visitors to the forum will end up executing the malicious code. For more on XSS, see Jakob Kallin and
Irene Lobo Valbuena, “Excess XSS: A Comprehensive Tutorial on Cross-Site Scripting,” https://excess-xss.com.

Why Handlebars and not React for everything?

I prefer to use Handlebars for the layout for several reasons. First, React makes it

painstakingly difficult to output unescaped HTML; it uses a weird syntax that involves

the word dangerously. But this is what you need to do for Universal React and

server-side rendering. Yes, the unescaped HTML can expose an app to cross-site

scripting attacks,1 but you’re rendering on the server, so you control the HTML string.

The second reason is that Handlebars more naturally renders things like <!DOCTYPE
html>. React can’t do it as naturally because React is meant more for individual ele-

ments than entire pages.

Third, React is for managing state and automatically maintaining the view in accordance

with the state. If all you’re doing is rendering a static HTML string from a React com-

ponent, why bother with React? It’s overkill. Handlebars is similar to HTML, so it’s

easy to copy and paste existing HTML code without having to think twice about JSX

and React gotchas that may bite you in the tail when you’re converting HTML to React.

Finally, my personal experience explaining code functionality to other developers and

to students in my courses and workshops has shown that some people have a harder

time understanding the structure when React components are used for layout on the

server and other React components are used for views on both the client and server.

429Project structure and Webpack configuration

Appendix A covers the installation of these tools, so I won’t bore you by duplicating

that information. Go ahead and create a new project folder named autocomplete.

This is what the folder structure will look like:

/autocomplete
/__tests__

autocomplete.test.js
/node_modules
/public

/css
bootstrap.css

/js
app.js
app.js.map

/src
app.jsx
autocomplete.jsx

/views
index.handlebars

index.js
package.json
rooms.json
webpack.config.js

The __tests__ folder is for Jest tests. As should now be familiar to you, the

node_modules folder is for Node.js dependencies (from npm’s package.json). The

public, public/css, and public/js folders contain the static files for the application.

The public/js/app.js file will be bundled by Webpack from the dependencies and the

JSX source code src/app.jsx. The source code for the Autocomplete component is in

the src/autocomplete.jsx file.

Folder for front-end/client
static files (alternative
names: static, dist, client,
build, and so on)

Compiled bundle
file (alternative

names: bundle.js
and script.js)

Source code in
JSX (alternative

names: jsx,
components,
and source)

An entry point: that is, the main
front-end script file, which uses
the Autocomplete component

Autocomplete component

Handlebars template to
render HTML layout on
the server side

Seed data for
MongoDB

On naming

Naming is paramount to good software engineering because a good name provides

a crucial piece of information. It can tell you a lot about the script, file, module, or

component without you having to read the source code, tests, or documentation

(which may not exist!).

Just as you’ve gotten familiar with putting JSX files into the jsx folder and using build

as a destination folder for compiled files, I’ve started to use other names. That’s

because you’ll encounter many different conventions. Each project will probably have

a different structure; the structure may vary a lot or a little. As a developer, it’s your

job to be comfortable with configuring tools such as Webpack and libraries such as

Express to work with any names. For that reason, and to add variety, in this chapter

I use public instead of build (plus public is a convention for static files served by

Express), src instead of jsx (you may have other source files, not just JSX, right?),

and so on.

430 CHAPTER 20 Project: Implementing autocomplete with Jest, Express, and MongoDB

 The views folder is for Handlebars templates. If you feel confident about your

React skills, you don’t have to use a template engine; you can use React as the Node.js

template engine!

 In the root of the project, you’ll find these files:

 webpack.config.js—Enables build tasks

 package.json—Contains project metadata

 rooms.json—Contains MongoDB seed data

 index.js—With the Express.js server and its routes for the API server (GET and

POST /rooms)

Don’t forget that to avoid installing each dependency with the exact version manually,

you can copy the package.json file from the following listing (ch20/autocomplete/

package.json) to the root folder, and run npm install.

{
"name": "autocomplete",
"version": "1.0.0",
"description": "React.js autocomplete component with Express.js, and

➥ MongoDB example.",
"main": "index.js",
"scripts": {
"test": "jest",
"start": "npm run build && ./node_modules/.bin/node-dev index.js",
"build": "./node_modules/.bin/webpack",
"seed": "mongoimport rooms.json --jsonArray --collection=rooms

➥ --db=autocomplete"
},
"keywords": [
"react.js",
"express.js",
"mongodb"

],
"author": "Azat Mardan",
"license": "MIT",
"babel": {
"presets": [

"react"
]

},
"dependencies": {
"babel-register": "6.11.6",
"body-parser": "1.13.2",
"compression": "1.5.1",
"errorhandler": "1.4.1",
"express": "4.13.1",
"express-handlebars": "2.0.1",
"express-validator": "2.13.0",
"mongodb": "2.0.36",

Listing 20.1 Dependencies and setup for the project

Lets you import and transpile
JSX on the server side

Express server-side
web framework

Express plug-in
(middleware)

for logging
HTTP requests Library to connect to

the MongoDB database

431Project structure and Webpack configuration

"morgan": "1.6.1"
},
"devDependencies": {
"axios": "0.13.1",
"babel-core": "6.10.4",
"babel-loader": "6.2.4",
"babel-preset-react": "6.5.0",
"jest-cli": "13.2.3",
"node-dev": "3.1.3",
"react": "15.5.4",
"react-dom": "15.5.4",
"webpack": "1.13.1"

}
}

Of course, using the same versions as in this book is important if you want to have a

working app in the end. Also, don’t forget to install the dependencies from package

.json using npm i.

 The scripts section is interesting:

"scripts": {
"test": "jest",
"start": "./node_modules/.bin/node-dev index.js",
"build": "./node_modules/.bin/webpack",
"seed": "mongoimport rooms.json --jsonArray --collection=rooms

➥ --db=autocomplete"
},

test is for running Jest tests, and start is for building and launching your server. You

also add seed data for the room names, which you can run with $ npm run seed. The

database name is autocomplete, and the collection name is rooms. This is the content

of the rooms.json file:

[{"name": "react"},
{"name": "node"},
{"name": "angular"},
{"name": "backbone"}]

When you run the seed command, it prints something like this (MongoDB must be

running as a separate process):

> autocomplete@1.0.0 seed /Users/azat/Documents/Code/

➥ react-quickly/ch20/autocomplete
> mongoimport rooms.json --jsonArray --collection=rooms --db=autocomplete

2027-07-10T07:06:28.441-0700 connected to: localhost
2027-07-10T07:06:28.443-0700 imported 4 documents

You’ve defined the project dependencies, and now you need to set up your Web-

pack build process so you can use ES6 and transform JSX. To do this, create the

432 CHAPTER 20 Project: Implementing autocomplete with Jest, Express, and MongoDB

webpack.config.js file in the root directory with the following code (ch20/autocom-

plete/webpack.config.js).

module.exports = {
entry: './src/app.jsx',
output: {
path: __dirname + '/public/js/',
filename: 'app.js'

},
devtool: '#sourcemap',
stats: {
colors: true,
reasons: true

},
module: {
loaders: [

{
test: /\.jsx?$/,
exclude: /(node_modules)/,
loader: 'babel-loader'

}
]

}
}

There’s no difference between this Webpack config file and those in the other proj-

ects you’ve built so far. It sets up Babel for transpiling JSX files and identifying where

the bundled JavaScript will be saved.

20.2 Implementing the web server

In this project, rather than a host HTML file, you need to write a simple web server to

receive requests based on what the reader has typed so far and respond with a list of

suggestions. It will also render the control on the server side and send the respective

HTML to the client. As noted earlier, the example uses Express as the web server. The

index.js file defines the web server and has three sections:

 Importing libraries and components

 Defining the REST API for receiving requests

 Rendering the control on the server side

We’ll look at each section in turn. First is the most straightforward bit: the imports.

The following listing shows the components and libraries the server needs

(ch20/autocomplete/index.js).

const express = require('express'),
mongodb = require('mongodb'),
app = express(),

Listing 20.2 Webpack configuration

Listing 20.3 Components and libraries for the web server

Sets an entry point for the project
(there can be multiple entry points)

Sets up the source maps to
show the correct source
line numbers in DevTools

Applies Babel, which uses Babel
configs from package.json

Defines and imports using a comma-style
(multiline) declaration (analogous to
having const on each line)

Instantiates
the Express

app

433Implementing the web server

bodyParser = require('body-parser'),
validator = require('express-validator'),
logger = require('morgan'),
errorHandler = require('errorhandler'),
compression = require('compression'),
exphbs = require('express-handlebars'),
url = 'mongodb://localhost:27017/autocomplete',
ReactDOM = require('react-dom'),
ReactDOMServer = require('react-dom/server'),
React = require('react')

require('babel-register')({
presets: ['react']

})
const Autocomplete = ,
React.createFactory(require('./src/autocomplete.jsx')),

port = 3000
...

The next section continues with index.js and discusses connecting to the database and

middleware.

20.2.1 Defining the RESTful APIs

The index.js file has GET and POST routes for /rooms. They provide RESTful API end-

points for your front-end app to supply the data. The data in turn will come from a

MongoDB database, which you can see with an npm script (npm run seed), assuming

that you have it in package.json and that you have the rooms.json file. But before

fetching data from the database, you need to connect to it and define the Express

routes (ch20/autocomplete/index.js).

mongodb.MongoClient.connect(url, function(err, db) {
if (err) {
console.error(err)
process.exit(1)

}
app.use(compression())
app.use(logger('dev'))
app.use(errorHandler())
app.use(bodyParser.urlencoded({extended: true}))
app.use(bodyParser.json())
app.use(validator())
app.use(express.static('public'))
app.engine('handlebars', exphbs())
app.set('view engine', 'handlebars')

app.use(function(req, res, next){
req.rooms = db.collection('rooms')
return next()

Listing 20.4 RESTful API routes

Sets the
MongoDB

connection
string to the

local database

Defines a babel-register
preset to import JSX files

Creates a React component function factory
from a JSX file (will return new instances;

no need to use createElement())

Connects to
MongoDB

Terminates the
current process
with an error code

434 CHAPTER 20 Project: Implementing autocomplete with Jest, Express, and MongoDB

})

app.get('/rooms', function(req, res, next) {
req.rooms

.find({}, {sort: {_id: -1}})

.toArray(function(err, docs) {
if (err) return next(err)
return res.json(docs)

}
)

})
app.post('/rooms', function(req, res, next) {
req.checkBody('name', 'Invalid name in body')

.notEmpty()
var errors = req.validationErrors()
if (errors) return next(errors)
req.rooms.insert(req.body, function (err, result) {

if (err) return next(err)
return res.json(result.ops[0])

})
})

If you need to brush up on the Express.js API, there’s a convenient cheatsheet in

appendix C.

20.2.2 Rendering React on the server

Finally, index.js contains the / route, where you render React on the server by hydrat-

ing components with the room objects (ch20/autocomplete/index.js).

app.get('/', function(req, res, next){
var url = 'http://localhost:3000/rooms'
req.rooms.find({}, {sort: {_id: -1}}).toArray(function(err, rooms){

if (err) return next(err)
res.render('index', {

autocomplete: ReactDOMServer.renderToString(Autocomplete({
options: rooms,
url: url

})),
data: `<script type="text/javascript">

window.__autocomplete_data = {
rooms: ${JSON.stringify(rooms, null, 2)},
url: "${url}"

}
</script>`

})
})

})

There are two properties for the Autocomplete component: options and url.

options contains the names of the chat rooms, and url is the URL of the API server

Listing 20.5 Server-side React

Returns a list of
existing chat rooms

Creates a new
chat room

Validates that the
payload contains a
name and isn’t empty

Calls the
database to save
the new message

Creates the Autocomplete
React element

Passes the
names of
rooms as

the options
property

Passes the URL of the API
to fetch and create names

Passes data
from the

server to the
browser code

to ensure that
Universal

React works
properly

Uses stringify parameters
to prettify the output

435Creating the server template

(http://localhost:3000/rooms in this case). The Autocomplete component will be

rendered on the browser as well.

20.3 Adding the browser script

The browser script is an example of how someone might use the autocomplete wid-

get; it will be run only on the browser. The file is very short. You just create an element

with options and url properties (ch20/autocomplete/src/app.jsx).

const React = require('react')
const ReactDOM = require('react-dom')

const Autocomplete = require('./autocomplete.jsx')
const {rooms, url} = window.__autocomplete_data

ReactDOM.render(<Autocomplete
options={rooms}
url={url}/>,

document.getElementById('autocomplete')
)

The global __autocomplete_data is provided via the data local (local is the term for

template data in Express lingo) using the <script> tag in the / route.

res.render('index', {
// ...
data: `<script type="text/javascript">

window.__autocomplete_data = {
rooms: ${JSON.stringify(rooms, null, 2)},
url: "${url}"

}
</script>`

The <script> HTML tag is injected into the index.hbs template (the .hbs file exten-

sion is assumed by Express, so it’s optional). Next, you’ll implement this template.

20.4 Creating the server template

In the index.handlebars file, you can see the props and autocomplete locals being

output.

<!DOCTYPE html>
<html lang="en">

<head>

Listing 20.6 Main client-side script

Listing 20.7 Express app rendering data for browser React

Listing 20.8 Host markup page

Accepts data from
a global variable

Creates and renders the
component using existing data
and without XHR requests

Uses a script element to “print”
JavaScript in the Handlebars
template index.hbs

Converts data from an
object into a string to
print it

436 CHAPTER 20 Project: Implementing autocomplete with Jest, Express, and MongoDB

<meta charset="utf-8" />
<title>Autocomplete with React.js</title>
<meta name="description" content="React Quickly: Autocomplete" />
<meta name="author" content="Azat Mardan" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<link type="text/css" rel="stylesheet" href="/css/bootstrap.css" />

</head>

<body>
<div class="container-fluid">

<div>{{{data}}}</div>
<div class="row-fluid">

<div class="span12">
<div id="content">

<div class="row-fluid"
id="autocomplete" />{{{autocomplete}}}</div>

</div>
</div>

</div>
<script type="text/javascript" src="/js/app.js"></script>

</body>
</html>

The work for running the autocomplete example is done. Obviously, it will be pow-

ered by the Autocomplete component. Next, you’ll finally start implementing it.

20.5 Implementing the Autocomplete component

The Autocomplete component is self-sufficient, meaning it isn’t just a view compo-

nent but can also fetch from and save to the REST API. It has two properties: options

and url. In accordance with TDD, let’s start coding the Autocomplete component

with tests.

20.5.1 The tests for Autocomplete

According to the principles of TDD/BDD, you should begin with tests. The

__tests__/autocomplete.test.js file lists room names and then renders the component

into autocomplete:

const rooms = [
{ "_id" : "5622eb1f105807ceb6ad868b", "name" : "node" },
{ "_id" : "5622eb1f105807ceb6ad868c", "name" : "react" },
{ "_id" : "5622eb1f105807ceb6ad868d", "name" : "backbone" },
{ "_id" : "5622eb1f105807ceb6ad868e", "name" : "angular" }

]
const TestUtils = require('react-addons-test-utils'),

React = require('react'),
ReactDOM = require('react-dom'),
Autocomplete = require('../src/autocomplete.jsx'),
fD = ReactDOM.findDOMNode

Renders the <script> tag
containing the list of names
and the URL for the API

Renders static HTML
with Universal
React’s checksum

Applies the client script that will activate
browser React and use __autocomplete_data

(see the previous section)

Hardcodes rooms data
for the room names

Saves the fD object for
convenience (less typing
means fewer errors)

437Implementing the Autocomplete component

const autocomplete = TestUtils.renderIntoDocument(
React.createElement(Autocomplete, {
options: rooms,
url: 'test'

})
)
const optionName = TestUtils.findRenderedDOMComponentWithClass(autocomplete,

➥ 'option-name')
...

You get the input field, which has an option-name class. These room options will

match the input-field value.

 Now you can write the actual tests. You can get all the option-name elements from

the widget and compare them against the number 4, which is the number of rooms in

the rooms array:

describe('Autocomplete', () => {
it('have four initial options', () => {
var options = TestUtils.scryRenderedDOMComponentsWithClass(

autocomplete,
'option-list-item'

)
expect(options.length).toBe(4)

})

The next test changes the input-field value and then checks for that value and the

number of the offered autocomplete option. There should be only one match, which

is react:

it('change options based on the input', () => {
expect(fD(optionName).value).toBe('')
fD(optionName).value = 'r'
TestUtils.Simulate.change(fD(optionName))
expect(fD(optionName).value).toBe('r')
options = TestUtils.scryRenderedDOMComponentsWithClass(autocomplete,

'option-list-item')
expect(options.length).toBe(1)
expect(fD(options[0]).textContent).toBe('#react')

})

The last test changes the room name field to ember. There should be no matches, only

the Add button:

it('offer to save option when there are no matches', () => {
fD(optionName).value = 'ember'
TestUtils.Simulate.change(fD(optionName))
options = TestUtils.scryRenderedDOMComponentsWithClass(

autocomplete,
'option-list-item'

)

Uses TestUtils from react-
addons-test-utils to render the

Autocomplete component

Gets the input field by
the class option-name

438 CHAPTER 20 Project: Implementing autocomplete with Jest, Express, and MongoDB

expect(options.length).toBe(0)
var optionAdd = TestUtils.findRenderedDOMComponentWithClass(

autocomplete,
'option-add'

)
expect(fD(optionAdd).textContent).toBe('Add #ember')

})
})

20.5.2 The code for the Autocomplete component

Finally, it’s time to write the Autocomplete component (ch20/autocomplete/

src/autocomplete.jsx). It includes the input field, the list of matching options, and

the Add button to add a new option when there are no matches. The component per-

forms two AJAX/XHR calls: to retrieve a list of options and to create a new option.

There are two methods:

 filter()—Happens on every new input in the <input> field. Takes the current

input and the list of options, and sets the state to a new list that contains only

options that match the current input.

 addOption()—Happens on a button click or Enter press for the Add button.

Takes the value, and sends it to the server.

This is how the Autocomplete component looks at a high level:

const React = require('react'),
ReactDOM = require('react-dom'),
request = require('axios')

class Autocomplete extends React.Component {
constructor(props) {

...
}
componentDidMount() {

...
}
filter(event) {

...
}
addOption(event) {

...
}
render() {

return (
<div ...>

<input ... onChange={this.filter}>
</input>
{this.state.filteredOptions.map(function(option,

➥ index, list) {
...
})}
...

<a ...onClick={this.addOption}>

Fetches the list of
options from the server

Filters the list to leave only the
options matching the input

Adds a new option persistently by
making an XHR call to the server

Captures the option
value by tracking the
browser event

Prints the list of matching
(filtered) options

Calls the add
method when
the button (a

link) is clicked

439Implementing the Autocomplete component

Add #{this.state.currentOption}

...
</div>

)
}

}

module.exports = Autocomplete

Now let’s start from the beginning of the file. Begin by importing the libraries in the

CommonJS/Node.js style; thanks to Webpack, this is bundled for the browser’s con-

sumption. The fD alias is for convenience:

const React = require('react'),
ReactDOM = require('react-dom'),
request = require('axios')

const fD = ReactDOM.findDOMNode

constructor sets the state and bindings. You set options from properties.

filteredOptions will initially be the same as all the options, and the current option

(input-field value) is empty. As the user types characters, filteredOptions will

become narrower and narrower, to match the entered letters.

 In componentDidMount(), you perform the GET request using the axios (request

variable) library. It’s similar to jQuery’s $.get(), but with promises:

class Autocomplete extends React.Component {
constructor(props) {
super(props)
this.state = {options: this.props.options,

filteredOptions: this.props.options,
currentOption: ''

}
this.filter = this.filter.bind(this)
this.addOption = this.addOption.bind(this)

}
componentDidMount() {
if (this.props.url == 'test') return true
request({url: this.props.url})

.then(response=>response.data)

.then(body => {
if(!body){

return console.error('Failed to load')
}

this.setState({options: body})
})
.catch(console.error)

}
...

Blocks fetching
for the test

Sets the result
to options

440 CHAPTER 20 Project: Implementing autocomplete with Jest, Express, and MongoDB

The filter() method is called on every change of the <input> field. The goal is to

leave only the options that match user input:

...
filter(event) {
this.setState({

currentOption: event.target.value,
filteredOptions:

(this.state.options.filter((option, index, list) => {
return (event.target.value === option.name.substr(0,

event.target.value.length))
}))

})
}

The addOption() method handles the addition of a new option, in the event that

there are no matches, by invoking the store’s action:

addOption(event) {
let currentOption = this.state.currentOption
request

.post(this.props.url, {name: currentOption})

.then(response => response.data)

.then((body) => {
if(!body){

return console.error('Failed to save')
}
this.setState({

options: [body].concat(this.state.options)
},
() => {

this.filter({target: {value: currentOption}})
}

)
})
.catch(error=>{return console.error('Failed to save')})

}

Finally, the render() method has a controlled component, <input>, with an onChange

event listener, this.filter:

...
render() {
return (

<div className="form-group">
<input type="text"

onKeyUp={(event) => (event.keyCode==13) ? this.addOption() : ''}
className="form-control option-name"
onChange={this.filter}
value={this.currentOption}
placeholder="React.js">

</input>

Uses filter()
on an array

Strips out
the #

Uses axios to make
a POST request

Uses Array.concat() to
create a new array instead
of Array.push(), because
mutating state directly is
a bad practice

Calls the filter() method in the callback of
setState() to ensure that the new value is

saved to the state when filter() runs

441Putting it all together

onKeyUp can be written as a method, not necessarily as an anonymous inline function,

right in {}.

 The list of filtered options is powered by the filteredOptions state, which is

updated in the filter() method. You iterate over it and print _id as keys and links

with option.name:

{this.state.filteredOptions.map(function(option, index, list){
return <div key={option._id}>

<a className="btn btn-default option-list-item"
href={'/#/'+option.name} target="_blank">
#{option.name}

</div>

})}
...

The last element is the Add button, which is shown only when there’s no filtered-

Options (no matches):

...
{(()=>{

if (this.state.filteredOptions.length == 0 &&
this.state.currentOption!='')
return <a className="btn btn-info option-add"

onClick={this.addOption}>
Add #{this.state.currentOption}

})()}

</div>
)

}
}

You’re using CommonJS syntax, so you can declare the Autocomplete component and

export it like this:

module.exports = Autocomplete

You’re finished. Good job, mate!

20.6 Putting it all together

If you’ve followed along through the steps, you should be able to install the depen-

dencies with this command (if you haven’t done so already):

$ npm install

Then, launch the app as follows (you must have started MongoDB first with $ mongod):

$ npm start

Uses the map() method to display
the list of filtered options

Uses a URL as a
value for the anchor
tag for each option

Displays the
name of an
option with

#, as in Slack

Hides the button when
there are matches

Uses
addOption
as an onClick
event handler

Prompts to add
the currently

typed value as
an option

442 CHAPTER 20 Project: Implementing autocomplete with Jest, Express, and MongoDB

The tests will pass after you run this command:

$ npm test

There’s also npm run build, without the watch (you’ll need to rerun it on changes).

npm start runs npm run build for you.

 Optionally, you can seed the database with $ npm run seed. Doing so populates

MongoDB with names from ch20/autocomplete/rooms.json:

[{"name": "react"},
{"name": "node"},
{"name": "angular"},
{"name": "backbone"}]

That’s all for the Autocomplete component. Now, run the project by building it with

npm run build and navigating to http://localhost:3000, assuming you have MongoDB

running in a separate terminal. Although 127.0.0.1 is an alias, you must use the same

domain localhost as the browser location to avoid CORS/Access-Control-Allow-Origin

issues, because JavaScript will call the localhost server.

 You should see the component with names (if you seeded the database) on the

page. When you type characters in the input field, the selection will be filtered accord-

ing to matches in the input. When there are no matches, click the Add button to add

the room to the database; it will immediately appear in the list.

Mongo and MongoUI

If you ever need to manipulate the data in MongoDB directly, the mongo shell (a.k.a.

REPL) is available via the mongo command in the terminal. It automatically connects

to the locally running instance on port 27017 (you must have one running; to do so,

use mongod). Once in the mongo shell, you can perform all kinds of operations like

creating a new document, querying a collection, dropping a database, and so on. The

advantage is that you can use the mongo shell anywhere, even on a remote server

without a GUI.

But there’s a lot of typing involved when working with the mongo shell, and typing is

slow and error-prone. Therefore, I built a better tool called MongoUI

(https://github.com/azat-co/mongoui), which you can use to query, edit, add docu-

ments, remove documents, and do other things in a browser by clicking with your

trackpad instead of typing copious amounts of JSON (MongoDB is JavaScript and

JSON-based).

MongoUI allows you to work with MongoDB via a user-friendly web interface. This fig-

ure shows the names of the rooms in my rooms collection in the autocomplete data-

base.

443Putting it all together

The end result of this autocomplete example is shown in figure 20.6. You can open

the Network tab and click Localhost to make sure the server-side rendering is working

(that is, that the data and HTML for names are there).

 If for some reason your project isn’t working, there may be a new version or a typo

in your code. Refer to the working code at www.manning.com/books/react-quickly or

https://github.com/azat-co/react-quickly/tree/master/ch20.

(continued)

Install MongoUI with npm i -g mongoui, launch it with mongoui, and then open in the

browser at http://localhost:3001. Oh, and MongoUI is built with React, Express, and

Webpack. Enjoy!

The MongoDB web interface

444 CHAPTER 20 Project: Implementing autocomplete with Jest, Express, and MongoDB

20.7 Homework

For bonus points, do the following:

 Add a test for a Remove button, which is as an X icon next to each option

name.

 Add the Remove button as an X icon next to each option name. Implement an

AJAX/XHR call, and add a REST endpoint to handle deletion.

2. Click Localhost. 1. Click the Network tab.

3. Check server-side rendering
 of data and HTML.

Figure 20.6 Inspect the localhost response by clicking Network (1) and Localhost (2) to ensure that

server-side rendering (3) is working properly.

445Summary

 Enhance the matching algorithm so that it will find matches in the middle of

names. For example, typing ac should show react and backbone, because both of

them contain the letters ac.

 Add a Redux store.

 Implement GraphQL instead of a REST API back end.

Submit your code in a new folder under ch20 as a pull request to this book’s GitHub

repository: https://github.com/azat-co/react-quickly.

20.8 Summary

 Curly braces output unescaped HTML in Handlebars, whereas in React you

need to use __html to dangerously set inner HTML.

 findRenderedDOMComponentWithClass() tries to find a single component by its

CSS class name, and scryRenderedDOMComponentsWithClass() finds multiple

components by their CSS class name (see chapter 16).

 babel-register lets you import and use JSX files: require('babel-register')

({presets:['react']}).

 MongoUI is an open source, web-based interface built on React for developing

and administering MongoDB databases. You can install it with npm i -g mongoui

and run it with mongoui.

447

appendix A
Installing applications

 used in this book

In this appendix, you’ll find installation instructions for the following applications

(valid as of May 2017):

 React v15

 Node.js v6 and npm v3

 Express v4

 Twitter Bootstrap v3

 Browserify

 MongoDB

 Babel

Installing React

You can download React in a myriad of ways:

 Hotlink to the file on a content-delivery network (CDN) such as Cloudflare:

https://cdnjs.cloudflare.com/ajax/libs/react/15.5.4/react.js or https://cdnjs

.cloudflare.com/ajax/libs/react/15.5.4/react-dom.js (full list: https://cdnjs

.com/libraries/react).

 Download the file from a React website such as http://facebook

.github.io/react/downloads.html or https://github.com/facebook/react.

 Use npm (see the next section), as in npm install react@15 react-dom@15.

You don’t need to be concerned about rendering React on servers right now.

react.js is in node_modules/react/dist.

 Use Bower (http://bower.io) with bower install --save react.

 Use Webpack/Grunt/Browserify/Gulp to bundle from npm modules.

448 APPENDIX A Installing applications used in this book

Installing Node.js

If you’re unsure whether you have Node.js and npm, or you don’t know what version

you have, run these commands in your Terminal/iTerm/bash/zsh/command line:

$ node -v
$ npm -v

Most of the time, npm comes with Node.js, so follow the instructions for Node.js to

install npm. The easiest way to install Node and npm is to go to the website and pick

the right architecture for your computer (Windows, macOS, and so on): https://

nodejs.org/en/download.

 For macOS users who already have Ruby (which typically comes with Mac com-

puters), I highly recommend using Homebrew. That’s what I use, because it allows

me to install other developer tools like databases and servers. To get brew on your

Mac, run this Ruby code in your terminal (I promise this will be the last time we use

Ruby in this book!):

$ ruby -e "$(curl -fsSL

➥ https://raw.githubusercontent.com/Homebrew/install/master/install)"

Now you should have brew installed; go ahead and update its registry and install

Node.js along with npm. The latter comes with Node.js, so as I mentioned earlier, no

additional commands are necessary:

$ brew update
$ brew install node

Another great tool that will let you switch between Node versions effortlessly is Node

Version Manager (nvm, https://github.com/creationix/nvm):

$ curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.32.1/install.sh

➥ | bash
$ nvm install node

That’s it. You should be able to see the versions of Node and npm. If you want to

upgrade your npm, use the npm command:

$ npm i -g npm@latest

To upgrade Node, use nvm or a similar tool like nave or n. For example, in nvm this

command will also reinstall packages to the new version:

$ nvm install node --reinstall-packages-from=node

If npm gives you permission errors when you install a module/package, then make

sure the npm folder has the proper permissions (be sure you understand what this

command does before you run it):

$ sudo chown -R $USER /usr/local/{share/man,bin,lib/node,include/node}

449Installing Express

Installing Express

Express is a local dependency just like React, meaning each project must install it. The

only way to install Express is with npm:

npm i express@4 -S

The -S adds the entry to package.json.

 In no way is this is a deep dive into Express.js, but it’ll get you started with the most

widely used Node.js web framework. First, install it with npm, like this:

$ npm install express@4.13.3

Typically, you’d create the server file index.js, app.js, or server.js, which you’ll later

start with the node command (for example, node index.js). The file has these parts:

 Imports

 Configurations

 Middleware

 Routes

 Error handlers

 Bootup

The imports section is trivial. In it, you require dependencies and instantiate objects.

For example, to import the Express.js framework and create an instance, write these

lines:

var express = require('express')
var app = express()

In the configurations section, you set configurations with app.set(), where the first

argument is a string and the second is a value. For example, to set the template engine

to Jade, use the configuration view engine:

app.set('view engine', 'jade')

The next section is for setting up middleware, which is similar to plug-ins. For exam-

ple, to enable the app to serve static assets, use the static middleware:

app.use(express.static(path.join(__dirname, 'public')))

Most important, you define routes with the app.NAME() pattern. For example, this is

the syntax for the GET /rooms endpoint taken from ch20/autocomplete:

app.get('/rooms', function(req, res, next) {
req.rooms.find({}, {sort: {_id: -1}}).toArray(function(err, docs){

if (err) return next(err)
return res.json(docs)

})
})

450 APPENDIX A Installing applications used in this book

Error handlers are similar to middleware:

var errorHandler = require('errorhandler')
app.use(errorHandler)

Finally, to start your app, run listen():

http.createServer(app).listen(portNumber, callback)

Of course, there’s more to Express.js than this brief introduction. Otherwise, I

wouldn’t have written a 350-page book on the framework (Pro Express.js; Apress, 2014,

http://proexpressjs.com)! If you want to hear from a different author(s), then con-

sider Express in Action by Evan M. Hahn (Manning, 2016, www.manning

.com/books/express-in-action). The framework is powerful but flexible and can be

configured without requiring much magic.

 If building Express.js apps isn’t your core competency, or if you know how to do it

but need a refresher, check out my Express.js cheatsheet in appendix C or view a

graphical version of it at http://reactquickly.co/resources.

Installing Bootstrap

You can get Twitter Bootstrap from the official website: http://getbootstrap.com. This

book uses v3.3.5. You have several options:

 Download an archive of minified JavaScript and style files without docs, ready

for use without modification: https://github.com/twbs/bootstrap/releases/

download/v3.3.5/bootstrap-3.3.5-dist.zip.

 Download the source code in Less (https://github.com/twbs/bootstrap/

archive/v3.3.5.zip) or Sass (https://github.com/twbs/bootstrap-sass/archive/

v3.3.5.tar.gz). These are ideal for tweaking.

 Link from a CDN. You’ll get better performance due to caching, but this

approach requires the internet to run.

 Install Bootstrap with Bower.

 Install Bootstrap with npm.

 Install Bootstrap with Composer.

 Create your own version of Bootstrap by selecting only the components you

need: http://getbootstrap.com/customize.

 Use a Bootstrap theme to get swappable looks without much work. For exam-

ple, Bootswatch offers Bootstrap themes at https://bootswatch.com.

To link from a CDN, include these tags in your HTML file:

<!-- Latest compiled and minified CSS -->
<link rel="stylesheet"

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css">

<!-- Optional theme -->

451Installing MongoDB

<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/

➥ bootstrap-theme.min.css">

<!-- Latest compiled and minified JavaScript -->
<script src=

"https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js">

➥ </script>

For Bower, npm, and Composer, run these terminal commands, respectively, in your

project folder (one for each package manager):

$ bower install bootstrap
$ npm install bootstrap
$ composer require twbs/bootstrap

For more information, see http://getbootstrap.com/getting-started.

Installing Browserify

Browserify lets you package npm modules into front-end bundles, ready for use in the

browser. Basically, you can turn any npm module (usually only for Node) into a front-

end module.

NOTE If you’re using Webpack, you won’t need Browserify.

First, install Browserify with npm:

$ npm install -g browserify

As an example, let’s use ch16/jest. Go to that folder, and create a script.js file to include

the generate-password.js library. The contents of script.js can be as minimal as this:

var generatePassword = require('generate-password')
console.log(generatePassword())
console.log(generatePassword())

Save script.js, and run this command in your terminal or command prompt:

$ browserify script.js -o bundle.js

Inspect bundle.js, or include it in index.html:

<script src="bundle.js"></script>

Open the index.html file in your browser, and inspect the console; it will show two

random passwords. The source code is in ch16/jest.

Installing MongoDB

The easiest way to install MongoDB is to go to www.mongodb.org/downloads#production

and choose the appropriate package for your system.

452 APPENDIX A Installing applications used in this book

 On macOS, you can use brew and run these commands:

$ brew update
$ brew install mongodb

Don’t install mongodb globally with npm. It’s a driver, not a database, so it belongs with

other dependencies in the local node_modules folder.

 This book uses version 3.0.6, so use later (or older) versions at your own risk. They

haven’t been tested to work with the book’s examples.

 Most often, you’ll need to create a /data/db folder with the proper permissions.

You can do that or pass any other custom folder to the mongod command with

--dbpath. For example:

$ mongod --dbpath ./data

Once the database is running (mongod), play with code in the shell, which is mongo:

$ mongo
> 1+1
> use autocomplete
> db.rooms.find()

Here’s an explanation of some of the most commonly used shell commands:

 > show dbs—Shows databases on the server

 > use DB_NAME—Selects the database DB_NAME

 > show collections—Shows collections in the selected database

 > db.COLLECTION_NAME.find()—Performs a find query on the collection named

COLLECTION_NAME to find any items

 > db.COLLECTION_NAME.find({"_id": ObjectId("549d9a3081d0f07866fdaac6")})—

Performs a find query on the collection named COLLECTION_NAME to find the

item with ID 549d9a3081d0f07866fdaac6

 > db.COLLECTION_NAME.find({"email": /gmail/})—Performs a find query on

the collection named COLLECTION_NAME to find items with an email property

matching /gmail

 > db.COLLECTION_NAME.update(QUERY_OBJECT, SET_OBJECT)—Performs an up-

date query on the collection named COLLECTION_NAME to update items that match

QUERY_OBJECT with SET_OBJECT

 > db.COLLECTION_NAME.remove(QUERY_OBJECT)—Performs a remove query for

items matching the QUERY_OBJECT criteria on the COLLECTION_NAME collection

 > db.COLLECTION_NAME.insert(OBJECT)—Adds OBJECT to the collection named

COLLECTION_NAME

Check out my MongoDB cheatsheet in appendix D, or view a graphical version of it at

http://reactquickly.co/resources. In addition to the most-used MongoDB commands,

it includes Mongoose (Node.js ODM) methods. Enjoy!

453Using Babel to compile JSX and ES6

Using Babel to compile JSX and ES6

Babel is mostly for ES6+/ES2015+, but it can also convert JSX to JavaScript. By using

Babel for React, you can get extra ES6 features to streamline your development.

 ES6 is finalized, but its features—as well as the features of future versions of

ECMAScript—may not be fully supported by all browsers. To use cutting-edge new fea-

tures like ES Next (https://github.com/esnext/esnext) or to use ES6 in older brows-

ers (IE9), get a compiler like Babel (https://babeljs.io). You can run it as a standalone

tool or use with your build system.

 To use Babel as a standalone CLI tool, first create a new folder. Assuming you have

Node.js and npm installed, run this command to create package.json:

$ npm init

Open the package.json file, and add babel lines in JSON. You can place them in any

order as long as babel is a top-level property. This tells Babel to use React and JSX to

transform the source files. The setting is called a preset. Without it, the Babel CLI won’t

do anything:

"babel": {
"presets": ["react"]

},

Install both Babel CLI v6.9.0 and React preset v6.5.0 with npm. In your terminal, com-

mand prompt, or shell, execute these commands:

$ npm i babel-cli@6.9.0 --save-dev
$ npm i babel-preset-react@6.5.0 --save-dev

You can use this command to check the version:

$ babel --version

There are Babel plug-ins for Grunt, Gulp, and Webpack (http://babeljs.io/docs/

setup). Here’s a Gulp example. Install the plug-in:

$ npm install --save-dev gulp-babel

In gulpfile.js, define a build task that compiles src/app.js into the build folder:

var gulp = require('gulp'),
babel = require('gulp-babel')

gulp.task('build', function () {
return gulp.src('src/app.js')
.pipe(babel())
.pipe(gulp.dest('build'))

})

For more about Webpack and Babel, see chapter 12.

454 APPENDIX A Installing applications used in this book

Node.js and ES6

You can compile Node.js files with a build tool or use the standalone Babel module

babel-core. Install it as follows:

$ npm install --save-dev babel-core@6

Then, in Node.js, call this function:

require('babel-core').transform(es5Code, options)

Standalone browser Babel

Babel v5.x has a standalone browser file that you can use for in-browser transforma-

tion (development only). It was removed in 6.x, but some folks created a babel-

standalone module to fill the gap (https://github.com/Daniel15/babel-standalone).

You can use that or the older version’s files—for example, from Cloudflare CDN:

 Unminified version—http://mng.bz/K1b9

 Minified version—http://mng.bz/sM59

Or you can build your own standalone browser file using a build tool like Gulp or

Webpack. This way, you can pick only the things you need, such as the React trans-

former plug-in and ES2015 presets.

455

appendix B
React cheatsheet

When you develop your own projects, searching on the internet for React docu-

mentation and APIs or going back to this book’s chapters to find a single method

isn’t efficient. If you’d like to save time and avoid the distractions lurking every-

where on the Net, use this React cheatsheet as a quick reference.

Print-ready PDF available

In addition to the text version presented here, I’ve created a free beautifully

designed, print-ready PDF version of this cheatsheet. You can request this PDF at

http://reactquickly.co/resources.

456 APPENDIX B React cheatsheet

Installation

React

 <script src="https://unpkg.com/react@15/dist/react.js"></script>

 $ npm install react --save

 $ bower install react --save

React DOM

 <script src="https://unpkg.com/react-dom@15/dist/react-dom.js"></script>

 $ npm install react-dom

 $ bower install react-dom --save

Rendering

ES5

ReactDOM.render(
React.createElement(

Link,
{href: 'https://Node.University'}

)
),
document.getElementById('menu')

)

ES5+JSX

ReactDOM.render(
<Link href='https://Node.University'/>,
document.getElementById('menu')

)

Server-side rendering

const ReactDOMServer = require('react-dom/server')
ReactDOMServer.renderToString(Link, {href: 'https://Node.University'})
ReactDOMServer.renderToStaticMarkup(Link, {href: 'https://Node.University'})

Components

ES5

var Link = React.createClass({
displayName: 'Link',
render: function() {
return React.createElement('a',

{className: 'btn', href: this.props.href}, 'Click ->', this.props.href)
}

})

457Advanced components

ES5 + JSX

var Link = React.createClass({
render: function() {
return Click ->

this.props.href
}

})

ES6 + JSX

class Link extends React.Component {
render() {
return Click ->

this.props.href
}

}

Advanced components

Options (ES5)

 Type validation in development mode—propTypes object

 Object of default properties—getDefaultProps function()

 Object of the initial state—getInitialState function()

ES5

var Link = React.createClass ({
propTypes: { href: React.PropTypes.string },
getDefaultProps: function() {
return { initialCount: 0 }

},
getInitialState: function() {
return {count: this.props.initialCount}

},
tick: function() {
this.setState({count: this.state.count + 1})

},
render: function() {
return React.createElement(

'a',
{className: 'btn', href: '#', href: this.props.href,

onClick: this.tick.bind(this)},
'Click ->',
(this.props.href ? this.props.href : 'https://webapplog.com'),
' (Clicked: ' + this.state.count+')'

)
}

})

ES5 + JSX

var Link = React.createClass ({
propTypes: { href: React.PropTypes.string },
getDefaultProps: function() {

458 APPENDIX B React cheatsheet

return { initialCount: 0 }
},
getInitialState: function() {
return {count: this.props.initialCount};

},
tick: function() {
this.setState({count: this.state.count + 1})

},
render: function() {
return (

<a onClick={this.tick.bind(this)} href="#" className="btn"
href={this.props.href}>
Click -> {(this.props.href ? this.props.href :

➥ 'https://webapplog.com')}
(Clicked: {this.state.count})

)

}
})

ES6 + JSX

export class Link extends React.Component {
constructor(props) {
super(props);
this.state = {count: props.initialCount};

}
tick() {
this.setState({count: this.state.count + 1});

}
render() {
return (

<a onClick={this.tick.bind(this)} href="#" className="btn"
href={this.props.href}>
Click -> {(this.props.href ? this.props.href :

'https://webapplog.com')}
(Clicked: {this.state.count})

)

}
}
Link.propTypes = { initialCount: React.PropTypes.number }
Link.defaultProps = { initialCount: 0 }

Lifecycle events

 componentWillMount function()

 componentDidMount function()
 componentWillReceiveProps function(nextProps)
 shouldComponentUpdate function(nextProps, nextState) bool
 componentWillUpdate function(nextProps, nextState)
 componentDidUpdate function(prevProps, prevState)
 componentWillUnmount function()

459Lifecycle events

Sequence of lifecycle events (inspired by http://react.tips)

M
o
u
n
ti

n
g

U
p
d
a
ti

n
g
 c

o
m

p
o
n
e
n
t

p
ro

p
e
rt

ie
s

U
p
d
a
ti

n
g
 c

o
m

p
o
n
e
n
t

s
ta

te
U

s
in

g
 f
o
r
c
e
U
p
d
a
t
e
(
)

U
n
m

o
u
n
ti

n
g

g
e
t
D
e
f
a
u
l
t
P
r
o
p
s
(
)

g
e
t
I
n
i
t
i
a
l
S
t
a
t
e
(
)

c
o
m
p
o
n
e
n
t
W
i
l
l
M
o
u
n
t
(
)

c
o
m
p
o
n
e
n
t
W
i
l
l
R
e
c
e
i
v
e
P
r
o
p
s
(
)

s
h
o
u
l
d
C
o
m
p
o
n
e
n
t
U
p
d
a
t
e
(
)

s
h
o
u
l
d
C
o
m
p
o
n
e
n
t
U
p
d
a
t
e
(
)

c
o
m
p
o
n
e
n
t
W
i
l
l
U
p
d
a
t
e
(
)

c
o
m
p
o
n
e
n
t
W
i
l
l
U
p
d
a
t
e
(
)

c
o
m
p
o
n
e
n
t
W
i
l
l
U
p
d
a
t
e
(
)

r
e
n
d
e
r
(
)

r
e
n
d
e
r
(
)

r
e
n
d
e
r
(
)

r
e
n
d
e
r
(
)

c
o
m
p
o
n
e
n
t
D
i
d
U
p
d
a
t
e
(
)

c
o
m
p
o
n
e
n
t
D
i
d
U
p
d
a
t
e
(
)

c
o
m
p
o
n
e
n
t
D
i
d
U
p
d
a
t
e
(
)

c
o
m
p
o
n
e
n
t
D
i
d
M
o
u
n
t
(
)

c
o
m
p
o
n
e
n
t
W
i
l
l
U
n
m
o
u
n
t
(
)

460 APPENDIX B React cheatsheet

Special properties

 key—Unique identifier for an element to turn arrays/lists into hashes for better

performance. For example: key={id}.

 ref—Reference to an element via this.refs.NAME. For example: ref="email"

will create a this.refs.email DOM node or ReactDOM.findDOMNode(this

.refs.email).

 style—Accepts an object for camelCased CSS styles instead of a string (immu-

table since v0.14). For example: style={{color: red}}.

 className—HTML class attribute. For example: className="btn".

 htmlFor—HTML for attribute. For example: htmlFor="email".

 dangerouslySetInnerHTML—Sets inner HTML to raw HTML by providing an

object with the key __html.

 children—Sets the content of the element via this.props.children. For

example: this.props.children[0].

 data-NAME—Custom attribute. For example: data-tooltip-text="...".

propTypes

Types available under React.PropTypes:

 any
 array
 bool
 element
 func
 node
 number
 object
 string

To make a property required (warning only), append .isRequired.

 More methods:

 instanceOf(constructor)
 oneOf(['News', 'Photos'])

 oneOfType([propType, propType])

Custom validation

propTypes: {
customProp: function(props, propName, componentName) {
if (!/regExPattern/.test(props[propName])) {

return new Error('Validation failed!');
}

}
}

461React components

Component properties and methods

Properties

 this.refs—Lists components with a ref property.

 this.props—Lists any properties passed to an element (immutable).

 this.state—Lists states set by setState and getInitialState (mutable).

Avoid setting state manually with this.state=....

 this.isMounted—Flags whether the element has a corresponding DOM node.

Methods

 setState(changes)—Changes state (partially) to this.state, and triggers a

rerender

 replaceState(newState)—Replaces this.state, and triggers a rerender

 forceUpdate()—Triggers an immediate DOM rerender

React add-ons

As npm modules:

 react-addons-css-transition-group (http://facebook.github.io/react/docs/

animation.html)

 react-addons-perf (http://facebook.github.io/react/docs/perf.html)

 react-addons-test-utils (http://facebook.github.io/react/docs/test-utils.html)

 react-addons-pure-render-mixin (http://facebook.github.io/react/docs/

pure-render-mixin.html)

 react-addons-linked-state-mixin (http://facebook.github.io/react/docs/

two-way-binding-helpers.html)

 react-addons-clone-with-props
 react-addons-create-fragment
 react-addons-css-transition-group
 react-addons-linked-state-mixin
 react-addons-pure-render-mixin
 react-addons-shallow-compare
 react-addons-transition-group

 react-addons-update (http://facebook.github.io/react/docs/update.html)

React components

 Lists of React components—https://github.com/brillout/awesome-react-

components and http://devarchy.com/react-components

 Material-UI—Material design React components (http://material-ui.com)

 React Toolbox—React components that implement the Google Material Design

specification (http://react-toolbox.com)

462 APPENDIX B React cheatsheet

 JS.Coach—Opinionated catalog of open source JS (mostly React) packages

(https://js.coach)

 React Rocks—Catalog of React components (https://react.rocks)

 Khan Academy—Collection of reusable React components (https://khan.github.io/

react-components)

 ReactJSX.com—Registry of React components (http://reactjsx.com)

463

appendix C
Express.js cheatsheet

When you develop your own projects, searching on the internet for React docu-

mentation and APIs or going back to this book’s chapters to find a single method

isn’t efficient. If you’d like to save time and avoid the distractions lurking every-

where on the Net, use this Express cheatsheet as a quick reference.

Print-ready PDF available

In addition to the text version presented here, I’ve created a free beautifully

designed, print-ready PDF version of this cheatsheet. You can request this PDF at

http://reactquickly.co/resources.

464 APPENDIX C Express.js cheatsheet

Installing Express.js

 $ sudo npm install express—Installs the latest Express.js locally

 $ sudo npm install express@4.2.0 --save—Installs Express.js v4.2.0 locally,

and saves it to package.json

 $ sudo npm install -g express-generator@4.0.0—Installs the Express.js

command-line generator v4.0.0

Generator

Usage

$ express [options] [dir]

Options

 -h—Prints usage information

 -V—Prints the express-generator version number

 -e—Adds EJS engine support; defaults to Jade if omitted

 -H—Adds hogan.js engine support

 -c <library>—Adds CSS support for <library> (less|stylus|compass);

defaults to plain CSS if -c <library> is omitted

 -f—Generates into a non-empty directory

Basics

 var express = require('express')—Includes a module

 var app = express()—Creates an instance

 app.listen(portNumber, callback)—Starts the Express.js server

 http.createServer(app).listen(portNumber, callback)—Starts the Express.js

server

 app.set(key, value)—Sets a property value by key

 app.get(key)—Gets a property value by key

HTTP verbs and routes

 app.get(urlPattern, requestHandler[, requestHandler2, ...])—Handles

GET method requests

 app.post(urlPattern, requestHandler[, requestHandler2, ...])—Handles

POST method requests

 app.put(urlPattern, requestHandler[, requestHandler2, ...])—Handles

PUT method requests

 app.delete(urlPattern, requestHandler[, requestHandler2, ...])—Handles

DELETE method requests

 app.all(urlPattern, requestHandler[, requestHandler2, ...])—Handles

all method requests

465Response

 app.param([name,] callback)—Processes URL parameters

 app.use([urlPattern,] requestHandler[, requestHandler2, ...])—Applies

middleware

Requests

 request.params—Parameter middleware

 request.param—Extracts one parameter

 request.query—Extracts a query string parameter

 request.route—Returns a route string

 request.cookies—Accesses cookies; requires cookie-parser

 request.signedCookies—Accesses signed cookies; requires cookie-parser

 request.body—Reads a payload; requires body-parser

Request-header shortcuts

 request.get(headerKey)—Reads Value for the header key

 request.accepts(type)—Checks whether the type is accepted

 request.acceptsLanguage(language)—Checks the language

 request.acceptsCharset(charset)—Checks the character set

 request.is(type)—Checks the type

 request.ip—Reads an IP address

 request.ips—Reads IP addresses (with trust-proxy on)

 request.path—Reads a URL path

 request.host—Accesses a host without a port number

 request.fresh—Checks freshness

 request.stale—Checks staleness

 request.xhr—Checks for XHR/AJAX-y requests

 request.protocol—Returns an HTTP protocol

 request.secure—Checks whether protocol is https

 request.subdomains—Reads an array of subdomains

 request.originalUrl—Reads the original URL

Response

 response.redirect(status, url)—Redirects a request

 response.send(status, data)—Sends a response

 response.json(status, data)—Sends JSON, and forces proper headers

 response.sendfile(path, options, callback)—Sends a file

 response.render(templateName, locals, callback)—Renders a template

 response.locals—Passes data to the template

466 APPENDIX C Express.js cheatsheet

Handler signatures

 function(request, response, next) {}—Request-handler signature

 function(error, request, response, next) {}—Error-handler signature

Stylus and Jade

Install Jade and Stylus:

$ npm i -SE stylus jade

Apply the Jade template engine:

app.set('views', path.join(__dirname, 'views'))
app.set('view engine', 'jade')

Apply the Stylus CSS processor:

app.use(require('stylus').middleware(path.join(__dirname, 'public')))

Body

var bodyParser = require('body-parser')
app.use(bodyParser.json())
app.use(bodyParser.urlencoded({

extended: true
}))

Static

app.use(express.static(path.join(__dirname, 'public')))

Connect middleware

$ sudo npm install <package_name> --save

 body-parser (https://github.com/expressjs/body-parser)—Accesses a request

payload

 compression (https://github.com/expressjs/compression)—Compresses using

Gzip

 connect-timeout (https://github.com/expressjs/timeout)—Cuts off requests

after a specified time

 cookie-parser (https://github.com/expressjs/cookie-parser)—Parses and reads

cookies

 cookie-session (https://github.com/expressjs/cookie-session)—Uses a ses-

sion via a cookies store

 csurf (https://github.com/expressjs/csurf)—Generates a token for Cross-Site

Request Forgery (CSRF)

 errorhandler (https://github.com/expressjs/errorhandler)—Uses develop-

ment error handlers

467Resources

 express-session (https://github.com/expressjs/session)—Uses a session via

an in-memory or another store

 method-override (https://github.com/expressjs/method-override)—Overrides

HTTP methods

 morgan (https://github.com/expressjs/morgan)—Outputs server logs

 response-time (https://github.com/expressjs/response-time)—Shows the re-

sponse time

 serve-favicon (https://github.com/expressjs/serve-favicon)—Serves a favicon

 serve-index (https://github.com/expressjs/serve-index)—Serves a directory

listing and files as a file server

 serve-static (https://github.com/expressjs/serve-static)—Serves static content

 vhost (https://github.com/expressjs/vhost)—Uses a virtual host

Other popular middleware

 cookies (https://github.com/jed/cookies) and keygrip (https://github.com/

jed/keygrip)—Parse cookies (analogous to cookie-parser)

 raw-body (https://github.com/stream-utils/raw-body)—Uses a raw payload/

body

 connect-multiparty (https://github.com/superjoe30/connect-multiparty)—

Processes file uploads

 qs (https://github.com/ljharb/qs)—Parses query strings with objects and

arrays as values

 st (https://github.com/isaacs/st) and connect-static (https://github.com/

andrewrk/connect-static)—Serve static files (analogous to staticCache)

 express-validator (https://github.com/ctavan/express-validator)—Performs

validation

 less (https://github.com/emberfeather/less.js-middleware)—Processes LESS

files into CSS

 passport (https://github.com/jaredhanson/passport)—Authenticates requests

 helmet (https://github.com/evilpacket/helmet)—Sets security headers

 connect-cors (https://npmjs.com/package/cors)—Enables cross-origin resource

sharing (CORS)

 connect-redis (http://github.com/visionmedia/connect-redis)—Connects to

Redis

Resources

 Express Foundation free online course, https://node.university/p/express-foundation

 Pro Express (Apress, 2014), my comprehensive book on Express.js,

http://proexpressjs.com

 Express.js posts on my blog, https://webapplog.com/tag/express-js

468

appendix D
MongoDB and

 Mongoose cheatsheet

When you develop your own projects, searching on the internet for React docu-

mentation and APIs or going back to this book’s chapters to find a single method

isn’t efficient. If you’d like to save time and avoid the distractions lurking every-

where on the Net, use this MongoDB cheatsheet as a quick reference.

Print-ready PDF available

In addition to the text version presented here, I’ve created a free beautifully

designed, print-ready PDF version of this cheatsheet. You can request this PDF at

http://reactquickly.co/resources.

469Mongoose basic usage

MongoDB

 $ mongod—Starts the MongoDB server (localhost:27017)

 $ mongo (connects to the local server by default)—Opens the MongoDB console

MongoDB console

 > show dbs—Shows databases on the server

 > use DB_NAME—Selects the database DB_NAME

 > show collections—Shows collections in the selected database

 > db.COLLECTION_NAME.find()—Performs a find query on the collection named

COLLECTION_NAME to find any items

 > db.COLLECTION_NAME.find({"_id"—ObjectId("549d9a3081d0f07866fdaac6")

})—Performs a find query on the collection named COLLECTION_NAME to find the

item with ID 549d9a3081d0f07866fdaac6

 > db.COLLECTION_NAME.find({"email": /gmail/})—Performs a find query on

the collection named COLLECTION_NAME to find items with an email property

matching /gmail

 > db.COLLECTION_NAME.update(QUERY_OBJECT, SET_OBJECT)—Performs an up-

date query on the collection named COLLECTION_NAME to update items that match

QUERY_OBJECT with SET_OBJECT

 > db.COLLECTION_NAME.remove(QUERY_OBJECT)—Performs a remove query for

items matching QUERY_OBJECT criteria on the COLLECTION_NAME collection

 > db.COLLECTION_NAME.insert(OBJECT)—Adds OBJECT to the collection named

COLLECTION_NAME

Installing Mongoose

 $ sudo npm install mongoose—Installs the latest version of Mongoose locally

 $ sudo npm install mongoose@3.8.20 --save—Installs Mongoose v3.8.20 locally,

and saves it to package.json

Mongoose basic usage

var mongoose = require('mongoose')
var dbUri = 'mongodb://localhost:27017/api'
var dbConnection = mongoose.createConnection(dbUri)
var Schema = mongoose.Schema
var postSchema = new Schema ({

title: String,
text: String

})
var Post = dbConnection.model('Post', postSchema, 'posts')
Post.find({},function(error, posts){

console.log(posts)
process.exit(1)

})

470 APPENDIX D MongoDB and Mongoose cheatsheet

Mongoose schema

 String

 Boolean
 Number
 Date
 Array
 Buffer
 Schema.Types.Mixed

 Schema.Types.ObjectId

Create, read, update, delete (CRUD) Mongoose example

// Create
var post = new Post({title: 'a', text: 'b')
post.save(function(error, document){

...
})

// Read
Post.findOne(criteria, function(error, post) {

...
})

// Update
Post.findOne(criteria, function(error, post) {

post.set()
post.save(function(error, document){
...

})
})

// Delete
Post.findOne(criteria, function(error, post) {

post.remove(function(error){
...

})
})

Mongoose model methods

 find(criteria, [fields], [options], [callback]), where callback has

error and documents arguments—Finds a document

 count(criteria, [callback])), where callback has error and count argu-

ments—Returns a count of documents with matching criteria

 findById(id, [fields], [options], [callback]), where callback has error

and document arguments—Returns a single document by ID

 findByIdAndUpdate(id, [update], [options], [callback])—Executes Mon-

goDB’s findAndModify() to update a document by ID

471Mongoose document methods

 findByIdAndRemove(id, [options], [callback])—Executes MongoDB’s

findAndModify() to remove a document by ID

 findOne(criteria, [fields], [options], [callback]), where callback has

error and document arguments—Returns a single document

 findOneAndUpdate([criteria], [update], [options], [callback])—Exe-

cutes MongoDB’s findAndModify() to update document(s)

 findOneAndRemove(id, [update], [options], [callback])—Executes

MongoDB’s findAndModify() to remove a document

 update(criteria, update, [options], [callback]), where callback has

error and count arguments—Updates documents

 create(doc(s), [callback]), where callback has error and doc(s) argu-

ments—Creates a document object, and saves it to the database

 remove(criteria, [callback]), where callback has an error argument—

Removes documents

Mongoose document methods

 save([callback]), where callback has error, doc, and count arguments—

Saves the document

 set(path, val, [type], [options])—Sets a value on the document’s property

 get(path, [type])—Gets the value of a property

 isModified([path])—Checks whether a property has been modified

 populate([path], [callback])—Populates a reference

 toJSON(options)—Gets JSON from the document

 validate(callback)—Validates the document

472

appendix E
ES6 for success

This appendix provides a quick introduction to ES6. It describes the 10 best fea-

tures of the new generation of the most popular programming language—

JavaScript:

1 Default parameters

2 Template literals

3 Multiline strings

4 Destructuring assignment

5 Enhanced object literals

6 Arrow functions

7 Promises

8 Block-scoped constructs: let and const

9 Classes

10 Modules

NOTE This list if highly subjective. It’s in no way intended to diminish the
usefulness of other ES6 features that didn’t make it on the list only because
I wanted to limit the number to 10.

Default parameters

Remember when we had to use statements like these to define default parameters?

var link = function (height, color, url) {
var height = height || 50
var color = color || 'red'
var url = url || 'http://azat.co'
...

}

473Template literals

This approach was fine until the value wasn’t 0. When you have 0, there may be a

bug. A 0 value defaults to the hardcoded value instead of becoming the value itself,

because 0 is falsy in JavaScript. Of course, who needs 0 as a value (#sarcasmfont)? So

we ignored this flaw and used the logical OR. No more! In ES6, you can put the

default value right in the signature of the function:

var link = function(height = 50, color = 'red', url = 'http://azat.co') {
...

}

This syntax is similar to Ruby. My favorite, CoffeeScript, has this feature, as well—and

has had it for many years.

Template literals

Template literals or interpolation in other languages is a way to output variables in a

string. In ES5, you had to break the string like this:

var name = 'Your name is ' + first + ' ' + last + '.'
var url = 'http://localhost:3000/api/messages/' + id

In ES6, you can use the new syntax ${NAME} in the back-ticked string:

var name = `Your name is ${first} ${last}.`
var url = `http://localhost:3000/api/messages/${id}`

Print-ready PDF available

In addition to this essay, I’ve created a free beautifully designed, print-ready

ES6/ES2015 cheatsheet. You can request this PDF at http://reactquickly.co/

resources.

474 APPENDIX E ES6 for success

Do you wonder if you still can use template-literal syntax with Markdown? Markdown

uses back-ticks for inline code blocks. That’s a problem! The solution is to use two,

three, or more back-ticks for Markdown code that has back-ticks for string templates.

Multiline strings

Another bit of yummy syntactic sugar is the multiline string. In ES5, you had to use

one of these approaches:

var roadPoem = 'Then took the other, as just as fair,\n\t'
+ 'And having perhaps the better claim\n\t'
+ 'Because it was grassy and wanted wear,\n\t'
+ 'Though as for that the passing there\n\t'
+ 'Had worn them really about the same,\n\t'

var fourAgreements = 'You have the right to be you.\n\
You can only be you when you do your best.'

In ES6, you can use back-ticks:

var roadPoem = `Then took the other, as just as fair,
And having perhaps the better claim
Because it was grassy and wanted wear,
Though as for that the passing there
Had worn them really about the same,`

var fourAgreements = `You have the right to be you.
You can only be you when you do your best.`

Destructuring assignment

Destructuring can be a harder concept to grasp, because some magic is going on.

Let’s say you have simple assignments where the keys/objects properties/attributes

house and mouse are the variables house and mouse:

var data = $('body').data(),
house = data.house,
mouse = data.mouse

Here are some other examples of destructuring assignments (from Node.js):

var jsonMiddleware = require('body-parser').json

var body = req.body,
username = body.username,
password = body.password

In ES6, you can replace the previous ES5 code with these statements:

var { house, mouse} = $('body').data()

var {json} = require('body-parser')

var {username, password} = req.body

data has the properties
house and mouse.

body has a username
and password.

You’ll get the house and
mouse variables.

475Enhanced object literals

This also works with arrays. Crazy!

var [col1, col2] = $('.column'),
[line1, line2, line3, , line5] = file.split('\n')

The first line assigns the 0 element to col1 and the 1 element to col2. The second

statement (yes, the missing line4 is intentional) produces the following assignment,

where fileSplitArray is the result of file.split('\n'):

var line1 = fileSplitArray[0]
var line2 = fileSplitArray[1]
var line3 = fileSplitArray[2]
var line5 = fileSplitArray[4]

It may take you some time to get used to the destructuring assignment syntax, but it’s

a sweet sugarcoating—no doubt about that.

Enhanced object literals

What you can now do with object literals is mind blowing! We went from a glorified

version of JSON in ES5 to something closely resembling classes in ES6.

 Here’s a typical ES5 object literal with some methods and attributes/properties:

var serviceBase = {port: 3000, url: 'azat.co'},
getAccounts = function(){return [1,2,3]}

var accountServiceES5 = {
port: serviceBase.port,
url: serviceBase.url,
getAccounts: getAccounts,
toString: function() {
return JSON.stringify(this.valueOf())

},
getUrl: function() {return "http://" + this.url + ':' + this.port},
valueOf_1_2_3: getAccounts()

}

If you want to be fancy, you can inherit from serviceBase by making it the prototype

with the Object.create() method:

var accountServiceES5ObjectCreate = Object.create(serviceBase)
var accountServiceES5ObjectCreate = {

getAccounts: getAccounts,
toString: function() {
return JSON.stringify(this.valueOf())

},
getUrl: function() {return "http://" + this.url + ':' + this.port},
valueOf_1_2_3: getAccounts()

}

I know, accountServiceES5ObjectCreate and accountServiceES5 are not identical,

because one object (accountServiceES5) has the properties in the proto object (see

476 APPENDIX E ES6 for success

figure E.1). But for the sake of the example, we’ll consider them similar. In the ES6

object literal, there are shorthands for assignment: getAccounts: getAccounts,

becomes just getAccounts, without the colon.

 Also, you set the prototype in the __proto__ property, which makes sense (not

'__proto__' though—that would be just a property):

var serviceBase = {port: 3000, url: 'azat.co'},
getAccounts = function(){return [1,2,3]}

var accountService = {
__proto__: serviceBase,
getAccounts,

In addition, you can invoke super in toString():

toString() {
return JSON.stringify((super.valueOf()))

},
getUrl() {return "http://" + this.url + ':' + this.port},

And you can dynamically create keys, object properties, and attributes such as

valueOf_1_2_3 with the ['valueOf_' + getAccounts().join('_')] construct:

['valueOf_' + getAccounts().join('_')]: getAccounts()
}
console.log(accountService)

The resulting ES6 object with __proto__ as the serviceBase object is shown in figure

E.2. This is a great enhancement to good-old object literals!

Figure E.1 Objects in ES5

477Arrow functions

Arrow functions

This is probably the feature I wanted the most. I love the fat arrows in CoffeeScript,

and now we have them in ES6. First, arrow functions save space and time because

they’re short:

const sum = (a, b, c) => {
return a + b + c

}

Fat arrows are also amazing because they make this behave properly. this has the

same value as in the context of a function—this doesn’t mutate. The mutation typi-

cally happens each time you create a closure.

 Using arrow functions in ES6 means you don’t have to use that = this, self =

this, _this = this, and .bind(this). For example, this code in ES5 is ugly:

var _this = this
$('.btn').click(function(event){

_this.sendData()
})

This ES6 code is better:

$('.btn').click((event) => {
this.sendData()

})

Figure E.2 The ES6 object literal extends from serviceBase and defines methods and attributes.

478 APPENDIX E ES6 for success

Sadly, the ES6 committee decided that having skinny arrows is too much of a good

thing, and they left us with a verbose function() instead. (Skinny arrows in Coffee-

Script work like the regular function in ES5 and ES6.)

 Here’s another example that uses call to pass the context to the logUpperCase()

function in ES5:

var logUpperCase = function() {
var _this = this

this.string = this.string.toUpperCase()
return function () {
return console.log(_this.string)

}
}

logUpperCase.call({ string: 'es6 rocks' })()

In ES6, you don’t need to mess around with _this:

var logUpperCase = function() {
this.string = this.string.toUpperCase()
return () => console.log(this.string)

}

logUpperCase.call({ string: 'es6 rocks' })()

Note that you can mix and match the old function with => in ES6 as you see fit. And

when an arrow function is used with a one-line statement, it becomes an expression:

that is, it will implicitly return the result of that single statement. If you have more

than one line, you need to use return explicitly.

 This ES5 code, which creates an array from the messages array,

var ids = ['5632953c4e345e145fdf2df8','563295464e345e145fdf2df9']
var messages = ids.map(function (value) {

return "ID is " + value
});

becomes this in ES6:

var ids = ['5632953c4e345e145fdf2df8','563295464e345e145fdf2df9']
var messages = ids.map(value => `ID is ${value}`) //

Notice that this code uses string templates. Another feature I love from CoffeeScript!

 Parentheses (()) are optional for single parameters in an arrow function’s signa-

ture. You need them when you use more than one parameter. In ES5, the following

code has function() with an explicit return:

var ids = ['5632953c4e345e145fdf2df8', '563295464e345e145fdf2df9'];
var messages = ids.map(function (value, index, list) {

return 'ID of ' + index + ' element is ' + value + ' '
})

Explicit return

Implicit return

Explicit return

479Promises

And the more eloquent version of the code in ES6 uses parentheses around the

parameters and an implicit return:

var ids = ['5632953c4e345e145fdf2df8','563295464e345e145fdf2df9']
var messages = ids.map((value, index, list) =>

`ID of ${index} element is ${value} `)

Promises

Promises have historically been a controversial topic. There were many promise

implementations with slightly different syntaxes: Q, Bluebird, Deferred.js, Vow, Avow,

and jQuery Deferred, to name just a few. Other developers said we didn’t need prom-

ises and could use async, generators, callbacks, and so on. Fortunately, ES6 now has a

standard Promise implementation.

 Let’s consider a trivial example of delayed asynchronous execution with setTimeout():

setTimeout(function(){
console.log('Yay!')

}, 1000)

This code can be rewritten in ES6 with Promise:

var wait1000 = new Promise(function(resolve, reject) {
setTimeout(resolve, 1000)

}).then(function() {
console.log('Yay!')

})

It can also use ES6 arrow functions:

var wait1000 = new Promise((resolve, reject)=> {
setTimeout(resolve, 1000)

}).then(()=> {
console.log('Yay!')

})

So far, we’ve increased the number of lines of code from three to five without any

obvious benefit. The benefit comes if you have more nested logic in the setTimeout()

callback. The following code

setTimeout(function(){
console.log('Yay!')
setTimeout(function(){
console.log('Wheeyee!')

}, 1000)
}, 1000)

can be rewritten with ES6 promises:

var wait1000 = ()=> new Promise((resolve, reject)=>
{setTimeout(resolve, 1000)})

wait1000()
.then(function() {

Implicit return

480 APPENDIX E ES6 for success

console.log('Yay!')
return wait1000()

})
.then(function() {

console.log('Wheeyee!')
});

Still not convinced that promises are better than regular callbacks? Me neither. I think

that once you get the idea of callbacks, there’s no need for the additional complexity

of promises. Nevertheless, promises are available in ES6 for those who adore them;

and they do have a fail-and-catch-all callback, which is a nice feature. See James Nel-

son’s post “Introduction to ES6 Promises: The Four Functions You Need to Avoid Call-

back Hell” for more about promises (http://mng.bz/3OAP).

Block-scoped constructs: let and const

You may have already seen the weird-sounding let in ES6 code. It isn’t a sugarcoating

feature; it’s more intricate. let is a new var that lets you scope a variable to blocks.

You define blocks with curly braces. In ES5, blocks did nothing to variables:

function calculateTotalAmount (vip) {
var amount = 0
if (vip) {
var amount = 1

}
{ // More crazy blocks!
var amount = 100
{

var amount = 1000
}

}
return amount

}

console.log(calculateTotalAmount(true))

The result is 1,000. Wow! That’s a bad bug. In ES6, you use let to restrict the scope to

the blocks. Variables are function-scoped:

function calculateTotalAmount (vip) {
var amount = 0 // Probably should also be let, but you can mix var and let
if (vip) {
let amount = 1 // First amount is still 0

}
{ // more crazy blocks!
let amount = 100 // First amount is still 0
{

let amount = 1000 // First amount is still 0
}

}
return amount

}

console.log(calculateTotalAmount(true))

481Classes

The value is 0, because the if block also has let. If it had nothing (amount=1), then

the expression would have been 1.

 When it comes to const, things are easier; it creates a read-only reference, and it’s

block-scoped like let. (Read-only means you can’t reassign the variable identifier.)

const works on objects as well; their properties can change.

 Suppose you have a constant url, like this: const url="http://webapplog.com".

Reassigning it with const url="http://azat.co" will fail in most browsers—

although the documentation states that const doesn’t mean immutability, if you try to

change the value, it won’t change.

 To demonstrate, here’s a bunch of constants that are okay because they belong to

different blocks:

function calculateTotalAmount (vip) {
const amount = 0
if (vip) {
const amount = 1

}
{ // More crazy blocks!
const amount = 100
{

const amount = 1000
}

}
return amount

}

console.log(calculateTotalAmount(true))

In my humble opinion, let and const overcomplicate the language. Without them,

we had only one behavior; but now there are multiple scenarios to consider.

Classes

If you love object-oriented programming, then you’ll love this feature. It makes writ-

ing classes and inheriting from them as easy as liking a comment on Facebook.

 Creating and using classes in ES5 was a pain because there was no class keyword

(it was reserved but did nothing). In addition, lots of inheritance patterns like pseudo-

classical,1 classical,2 and functional just added to the confusion, pouring gasoline on

the fire of the JavaScript wars.

 I won’t show you how to write a class (yes, there are classes; objects inherit from

objects) in ES5, because there are many flavors. Let’s look at an ES6 example. The ES6

class uses prototypes, not the function factory approach. Here’s a baseModel class in

which you can define a constructor and a getName() method:

1 See Ilya Kantor, “Class Patterns,” http://javascript.info/class-patterns.
2 See Douglas Crockford, “Classical Inheritance in JavaScript,” www.crockford.com/javascript/inheritance

.html.

482 APPENDIX E ES6 for success

class baseModel {
constructor(options = {}, data = []) {

this.name = 'Base'
this.url = 'http://azat.co/api'
this.data = data
this.options = options

}
getName() {

console.log(`Class name: ${this.name}`)
}

}

Notice that this code uses default parameter values for options and data. Also, method

names no longer need to include the word function or a colon (:). The other big dif-

ference is that you can’t assign properties (this.NAME) the same way as methods—that

is, you can’t say name at the same indentation level as a method. To set the value of a

property, assign a value in the constructor.

 AccountModel inherits from baseModel with class NAME extends PARENT_NAME.

To call the parent constructor, you can effortlessly invoke super() with parameters:

class AccountModel extends baseModel {
constructor(options, data) {
super({private: true}, ['32113123123', '524214691'])
this.name = 'Account Model'
this.url +='/accounts/'

}
}

If you want to be fancy, you can set up a getter like this, and accountsData will be a

property:

class AccountModel extends baseModel {
constructor(options, data) {
super({private: true}, ['32113123123', '524214691'])
this.name = 'Account Model'
this.url +='/accounts/'

}
get accountsData() {
// ... make XHR
return this.data

}
}

How do you use this abracadabra? It’s easy:

let accounts = new AccountModel(5)
accounts.getName()
console.log('Data is %s', accounts.accountsData)

In case you’re wondering, the output is

Class name: Account Model
Data is %s 32113123123,524214691

Class constructor

Class
method

Calls the parent
constructor method
with super

Calculated
attribute getter

483Modules

Modules

As you may know, JavaScript had no support for native modules before ES6. People

came up with AMD, RequireJS, CommonJS, and other workarounds. Now there are

modules with import and export operands.

 In ES5, you use <script> tags with an immediately invoked function expression or

a library like AMD, whereas in ES6 you can expose a class with export. I’m a Node.js

guy, so I use CommonJS, which is also a Node.js module syntax.

 It’s straightforward to use CommonJS on the browser with the Browserify bundler

(http://browserify.org). Let’s say you have a port variable and a getAccounts method

in an ES5 module.js file:

module.exports = {
port: 3000,
getAccounts: function() {
...

}
}

In the ES5 main.js file, you’d require('module') that dependency:

var service = require('module.js')
console.log(service.port) // 3000

In ES6, you use export and import. For example, this is the library in the ES6 module.js

file:

export var port = 3000
export function getAccounts(url) {

...
}

In the ES6 main.js importer file, you use the syntax import {name} from 'my-module':

import {port, getAccounts} from 'module'
console.log(port) // 3000

Or you can import everything as a service variable in main.js:

import * as service from 'module'
console.log(service.port) // 3000

Personally, I find ES6 modules confusing. Yes, they’re more eloquent, but Node.js

modules won’t change anytime soon. It’s better to have only one style for browser and

server JavaScript, so I’ll stick with CommonJS/Node.js style for now. In addition, sup-

port for ES6 modules in browsers isn’t available as of this writing, so you’ll need some-

thing like jspm (http://jspm.io) to use ES6 modules.

 For more information and examples, see http://exploringjs.com/es6/

ch_modules.html. And no matter what, write modular JavaScript!

484 APPENDIX E ES6 for success

Using ES6 today with Babel

To use ES6 today, use Babel as part of your build process. There’s more information

on Babel in chapter 3.

Other ES6 features

There are many other noteworthy ES6 features that you probably won’t use (at least,

not right away). Here they are, in no particular order:

 New math, number, string, array, and object methods

 Binary and octal number types

 Default rest spread

 For of comprehensions (hello again, mighty CoffeeScript!)

 Symbols

 Tail calls

 Generators

 New data structures like Map and Set

ECMAScript improves productivity and reduces mistakes. It will continue to evolve.

Learning never stops. Take advantage of these resources:

 ES6 cheatsheet, http://reactquickly.co/resources

 Understanding ECMAScript 6 by Nicolas Zakas (Leanpub, 2017), https://leanpub

.com/understandinges6

 Exploring ES6 by Axel Rauschmayer (Leanpub, 2017), http://exploringjs

.com/es6.html

 ES6 course, https://node.university/p/es6

 ES7 and ES8 course, https://node.university/p/es7-es8

485

index

Symbols

_ (underscore) character 179
... operator 179
{} (curly braces) 72, 145, 189
* (asterisk) character 311
(hash) symbol 247

A

about variable 359
abstractions, powerful 13
accountsData property 482
accumulator value 290
action argument 290
action creators

overview 293–294
passing into component

properties 298–302
actions

dispatching 297–298
overview 280, 292–293

activeClassName attribute 263
add-ons 461
addOption() function 438, 440
addToCart() function

393–394, 403
ancestors 115
Angular 253, 277
animation events 114
Apache Tomcat 354
API (application program

interface)
querying 316–321
saving responses into

stores 316–321
App component 381, 393–396
app.get() function 355
app.jsx files

creating route mapping
in 250

writing 391–398
App component 394–396
Index component 397–398

app.listen() function 355
app.NAME() function 449
app.set() function 357, 449
apps, running in Express

378–382
arbitrary code 307
Array class 191
Array.find() function 267
Array.reduce() function 290
arrow class 207
arrow functions

in ES6 477–479
overview 82

assert module 333
assertions 329
asset hashing 229
asterisk character 311
attributes, passing with spread

operators 181
autobinding 78
Autocomplete component 427

code for 438–441
implementing 436–443

adding browser scripts 435
Autocomplete

component 436–441
web servers 432–435

rendering on server side
from 435–436

tests for 436–437
automocking 328
axios library 305, 317

B

Babel compiler
compiling

ES6 453–454
JSX 453–454
Node.js 454

standalone browser 454
using with ES6 484

babel property 232, 453
Babel tool, setting up JSX

transpiler using 59–63
babel-core 233
babel-loader 233
babel-preset-react 352
babel-register 352, 367
Backbone framework

overview 253
routing with 269–272

backticks 318
baseModel class 482
BDD (behavior-driven

development) 326, 332
before statement 329
beforeEach statement 329
binary operator 105
bind() function 112, 122, 221
block-scoped constructs

const 480–481

INDEX486

let 480–481
body-parser 366, 465–466
bookstore, building with React

Router
creating components

391–404
Host HTML files 390
project structure 387–390
Webpack configuration

387–390
Boolean attribute values, in

JSX 66–67
booting servers 360–362
Bootstrap framework,

installing 450–451
bootup 357
browser scripts, adding 435
Browserify tool

installing 451
overview 330

browsers
history 258–259
standalone, in Babel 454

btn-group class 217
btn-primarydisabled class 420
bubbling phases, in DOM

events 114–116
build tool 227
Button component, Timer

component and 220–222
Button form element 146
buttonLabel property 166
buttons, integrating 135–136

C

Cancel button 223
capture phases, in DOM

events 114–116
capturing

changes, of uncontrolled
elements 156–157

form changes 151–153
Cart component 398–400
CartItems object 393
CD (continuous

deployment) 423
CDN (content-delivery

network) 447
change() method 156
cheatsheet

for Express.js
basic usage 464
connect middleware

466–467

generator 464
handler signatures 466
HTTP verbs 464–465
installing 464
Jade 466
middleware 467
request-header

shortcuts 465
requests 465
resources 467
response 465
routes 464–465
Stylus 466

for MongoDB database 469
for Mongoose

document methods 471
installing 469
model methods 470–471
schema 470

for React
add-ons 461
components 457, 461–462
installing 456
lifecycle events 458
methods 461
properties 460–461
propTypes 460

Checkbox element 146
checkboxGroup state 147
checked attribute 147
checked property 145
Checkout component 400–401
children

distinguishing from their
parents 179–180

rendering 174–177
children property 174, 176, 460
CI (continuous integration) 423
class attribute 66
classes, in ES6 481–482
className 460
clean-tagged-string library 318
clearInterval() function 216
click event 334
click() method 125
ClickCounterButton 127, 130
client-side code 375–376
client-specific queries 307
clipboard events 114
cloning 148
Cloudflare 447
code

for Autocomplete
component 438–441

for Password

component 416–422
for password modules

413–414
maintainability of 348
modularizing with Webpack

build tool 234–236
reusing with higher-order

components
using displayName

179–180
using spread operator 181

splitting 229
code generators 228
CodeBuild 424
CodeDeploy 424
CodePipeline 424
combineReducers()

function 289
comments, in JSX 58–59
community 14–15
compiling

ES6 453–454
JSX 453–454
Node.js 454

component classes, creating
31–34

component lifecycle events
categories of 91–94
example 106–110
executing all events

together 97–98
implementing 95–96
mounting 99

componentDidMount()
100

componentWillMount()
99–100

overview 91
unmounting 105
updating 103–105

componentDidUpdate()
105

componentWillReceive-
Props(newProps) 104

componentWillUpdate()
105

shouldComponentUpdate()
104–105

component-based architecture,
using pure JavaScript 10–12

componentDidMount()
function 100, 138, 251, 301,
322, 374, 439

componentDidUpdate()
function 92, 105

INDEX 487

components
composing on servers

373–375
connecting to stores 294–297
creating 391–404

writing app.jsx files
391–398

default properties in 165–167
distinguishing children from

their parents 179–180
ES5, options 457
exchanging data

between 129–131
higher-order

for code reuse 177–184
withRouter 265–266

in JSX 46–48
layout, creating 262–265
passing action creators

into 298–302
presentational vs.

container 184
rendering on server side

from 354–362
HTML pages 355–362
simple text 354–355

scaling
property types 167–174
rendering children

174–177
validation 167–174

See also Button component;
Menu component; Timer
component; TimerWrap-
per component; Tooltip
component

componentWillMount()
function 92, 99–100, 132,
300, 322

componentWillReceiveProps()
function 104, 395

componentWillUnmount()
function 92, 105, 251

componentWillUpdate()
function 105, 303

compression 366, 466
concurrently tool, Node 284
configurations 356
configuring

Express 357–358
HMR 240–243
Redux data library 283–286
servers 367–368
Webpack 233–234, 376–378,

387–390

connect-cors 467
connect-multiparty 467
connect-redis 467
connect-timeout 466
connect() function 280, 287,

292, 295, 299, 321
consoles, in MongoDB

database 469
const construct 480–481
const variables 87
constructor() function 74–75,

125, 204, 235
container components, vs.

presentational 184
Content class 176
Content component 229
content-delivery network. See

CDN
contextType 264
continuous integration. See CD;

CI
controlled components 143
cookie-parser 465–466
cookie-session 466
cookies 467
count method 470
counter property 128
cover property 323
create method 471
create-react-app 228
createClass() function

76, 112, 122
createElement() function

71, 112, 192–193, 339, 351
createFactory() function 351
createStore() function 289, 381
cross-site scripting attack. See

XSS
csurf 466
curly braces 72, 145, 189
current value 290
currentDate property 165
currentTarget 122
custom validation 169

D

dangerouslySetInnerHTML
359, 460

dashes 85
data

exchanging between
components 129–131

Flux, architecture of 278–279
routes 267–268

unidirectional flow of, support
for 275–277

using GraphQL
adding servers to Netflix

clone 308–323
overview 306–308

using Redux 279–303
action creators 293–294
actions 292–293
combining reducers 289
configuration 283–286
connecting components to

stores 294–297
dependencies 283–286
dispatching an action

297–298
enabling Redux 286–287
Netflix clone 281–283
passing action creators into

component
properties 298–302

React support for
unidirectional data
flow 275–277

reducer for movies
290–292

routes 287–288
running Netflix clone 303
understanding Flux data

architecture 278–279
data structure, in

GraphQL 313–314
data- attributes, in JSX 65
data-NAME attribute 460
data-react-checksum

attribute 353, 362
data-reactid attribute 353
data-reactroot attribute

118, 353, 362
Datepicker 165
declarative style 7–10
default parameters, in ES6

472–473
default properties, in

components 165–167
defaultProps attribute

82, 165, 168
defaultValue attribute 162
DELETE method requests 464
dependencies, in Redux data

library 283–286
describe statement 329
destructuring

in ES6 474–475
overview 391

INDEX488

devDependencies property
259, 285, 388

developer experience. See DX
development mode 167
devtool property 233, 376
DevTools 172
directory flag 73
disabled attribute 136
disadvantages of React 15
dispatch() function 291, 293,

297, 299
dispatching actions 297–298
Display component 98
displayName, distinguishing

child components from
their parents 179–180

distribution 409
div element 299, 334
document element 119
document methods, in

Mongoose 471
DOM (document object model),

events 112–131
bubbling phases 114–116
capture phases 114–116
exchanging data between

components 129–131
not supported by React,

responding to 131–134
overview 117–120
passing event handlers as

properties 126–129
SyntheticEvent event

objects 120–124
using states with 124–126

DOMEventTarget 122
DoneLink 181
dontMock() function 331
double quotes 145
DRY (don’t repeat yourself)

principle 177, 220
DX (developer experience) 280

E

ECMAScript 5. See ES5 language
specification

ECMAScript 6. See ES6 language
specification

ecosystem 14–15
elements

creating with JSX 45–46
finding with TestUtils

336–337
nesting 27–31

of forms 145–151
<input> element 146–149
<option> element 149–151
<select> element 149–151
<textarea> element 149
uncontrolled with change

capturing 156–157
uncontrolled without

capturing changes 158
else statement 121
emailStaticMarkup 353
Ember 253
empty array 102, 118
enabling Redux 286–287
endpoints 305
enhanced object literals, in

ES6 475–476
Enter keystroke 341
entry point 310
environment variables 312
Enzyme library 343
errors, handling 357, 360,

366, 466
ES5 language specification 457
ES6 language specification

arrow functions 477–479
classes 481–482
compiling 453–454
default parameters 472–473
destructuring 474–475
enhanced object literals

475–476
features of 484
modules 483
multiline strings 474
promises 479–481
template literals 473–474
using with Babel 484

ESLint 284
event handlers, passing as

properties 126–129
event objects, with

SyntheticEvent 120–124
events

DOM 112–131
bubbling phases 114–116
capture phases 114–116
exchanging data between

components 129–131
not supported by React,

responding to 131–134
overview 117–120
passing event handlers as

properties 126–129

SyntheticEvent event
objects 120–124

using states with 124–126
in forms 143–145
integrating with jQuery

UI 134–138
integrating buttons 135–136
integrating labels 136–138

events. See component lifecycle
events

exchanging data between
components 129–131

Expect syntax 332
expect() function 332
expect(OBJECT).toBe(value)

332
expect(OBJECT).toBeDefined()

333
expect(OBJECT).toBeFalsy()

333
expect(OBJECT).toBeNull()

333
expect(OBJECT).toBeTruthy()

333
expect(OBJECT).toBe-

Undefined() 333
expect(OBJECT).toEqual(value)

333
expect(OBJECT).toMatch

(regexp) 333
Express framework

cheatsheet
basics 464
connect middleware

466–467
generator 464
handler signatures 466
HTTP verbs 464–465
installing 464
Jade 466
middleware 467
request-header

shortcuts 465
requests 465
resources 467
response 465
routes 464–465
Stylus 466

implementing Autocomplete
component 436–441
code for 438–441
tests for 436–437

implementing autocomplete
with
adding browser scripts 435

INDEX 489

Express framework (continued)
creating server

templates 435–436
implementing web

servers 432–435
installing 449–450
Node and, rendering on the

server side from
components 354–362

with Universal
JavaScript 363–382
client-side React code

375–376
composing React

components on the
server 373–375

running apps 378–382
server-side layout templates

with Handlebars
371–373

setting up servers 366–371
setting up Webpack

376–378
express-graphql package 312
express-react-views library

359, 362
express-session 467
express-validator 366, 370, 467
express.static() function 311
extract-text-webpack-plugin 283

F

fat arrows 112
fat-arrow functions 216, 419
features, of ES6 484
fetch() function 101, 300, 305
fetchMovieActionCreator()

function 297
fileSplitArray 475
filter() function 438, 441
filteredOptions 439
find method 470
findAndModify method 471
findById method 470
findByIdAndRemove

method 471
findByIdAndUpdate

method 470
findOne method 471
findOneAndUpdate

method 471
findRenderedComponentWith-

Type() function 337

findRenderedDOMComponent-
WithClass() function
337, 445

findRenderedDOMComponent-
WithTag() function 337

Flatly 202, 211, 409
flow-bin tool 238
flux module, Facebook 279
Flux, data architecture of

278–279
focus events 114
Footer component 363
for attribute 66
forceUpdate() function 461
form events 114
forms 141–162

capturing changes 151–153
default values 161–162
defining 143–145
defining elements of 145–151

<input> element 146–149
<option> element 149–151
<select> element 149–151
<textarea> element 149

defining its events 143–145
uncontrolled elements with

change capturing 156–157
uncontrolled elements with-

out capturing changes 158
using references to access

values 159–161
fragment identifier 257

G

Generate Password module 413
generate() method 419
generatePassword()

function 413
generator, in Express.js 464
GET endpoint 305
get method 471
GET method requests 464
getAccounts() method 483
getAttribute() method 161
getElementById() function 219
getEventListeners()

method 118
getStyle() function 133
Glyphicons 181
Google Webmaster Central

Blog 347
GraphQL

installing on servers 310–313
schema of 314–316

working with data
adding servers to Netflix

clone 308–323
overview 306–308

graphqlHTTP library 312

H

handleActions 291
Handlebars templating engine

layouts with 358–359
server-side layout templates

with 371–373
handleCheckbox() method 148
handleClick() method

125, 129, 178
handleMouseOver()

method 122
handler property 169
handler signatures, in

Express.js 466
handleSlide 135
handleStartTimer()

method 222
handleSubmit() method 144
hash symbol 247
hash token 385
hash, history 257–258
hbs template 357
Header component 363
headless browsers 334
Hello World program 21–25
helmet 467
hierarchical queries 307
higher-order components

for code reuse 177, 181–184
using displayName

179–180
using spread operator 181

withRouter, accessing routers
with 265–266

history library 393
HMR (hot module

replacement) 227, 231,
237, 239–244

HOC (higher-order
component) 177

hoisted function 87
Host HTML files 390, 411–412
href attribute 192
html attribute 460
HTML pages, rendering

355–362
booting up servers 360–362
configuration 357–358

INDEX490

HTML pages, rendering
(continued)

handling errors 360
layout with Handlebars

358–359
middleware 358
routes 358

HTTP verbs, in Express.js
464–465

hydrating data 378

I

idempotent 314
if statement 121
if/else condition, in JSX 55–58
IFrame 183
ig (case insensitive and

global) 154
image events 114
immutable state 128
implementing routers 247–252

creating route mapping in
app.jsx 250

creating Router component in
router.jsx 250–252

imports 356
incoming property

transition 104
Index component 393, 397–398
index template 371
indexing pages 346–347
IndexRoute 288
innerHTML value 161
<input> element 146–149
inputValue 72
installing

Bootstrap 450–451
Browserify 451
Express 449–450
Express.js 464
GraphQL on servers 310–313
MongoDB 451–452
Mongoose 469
Node.js 448
React 447
React DOM 456
Webpack build tool 231–233

interactive properties 145
isActive() method 263
isDefaultPrevented()

method 123
isModal condition 396
isModified() method 471
isPersistent 123

isPropagationStopped()
method 123

isRequired property 169
isVisible 105
IT (information

technology) 176
it statement 329

J

Jade templating engine,
Express.js and 466

JavaScript XML. See JSX
JavaScript, component-based

architecture using 10–12
Jest

assertions 332–333
checking passwords with

422–424
Host HTML files 411–412
implementing Password

component 415–422
implementing password

modules 412–414
implementing Autocomplete

component 436–441
implementing autocomplete

with
adding browser scripts 435
creating server

templates 435–436
implementing web

servers 432–435
UI testing with 333–343

finding elements with
TestUtils 336–337

shallow rendering 342–343
UI-testing password

widget 337–341
unit testing with 329–333

advantages of 327–328
Jest assertions 332–333
types of 326–327
UI testing with 333–343
writing tests 330–332

jest.autoMockOff()
function 331

jQuery Slider 135
jQuery UI (user interface)

integrating with events
134–138
integrating buttons

135–136
integrating labels 136–138

JS.Coach 462

JSX (JavaScript XML)
attributes not accepted by 66
Boolean attribute values

66–67
building Menu component

in 195–199
refactoring Link

component 198–199
refactoring Menu

component 197–198
running JSX projects 199

building Menu component
without 188–195

comments 58–59
creating elements with 45–46
data-attributes 65
if/else condition 55–58
in components 46–48
outputting variables in 48–49
overview 42–45
properties 49–53
React component methods,

creating 53–54
running projects in 199
special characters in 64–65
style attribute 65–66
tags, compiling 453–454
transpiler, setting up using

Babel 59–63
with React Router 256

K

key attribute 190
key property 190, 460
keyboard events 114
keyCode 341
Khan Academy 462

L

label property 192
labels, integrating 136–138
launchClock() method 76
layout components,

creating 262–265
layouts

server-side templates with
Handlebars 371–373

with Handlebars 358–359
LESS files 467
let construct 480–481
libraries 16–17
lifecycle events 91, 458

INDEX 491

Link component
overview 192–194
refactoring 198–199

listen() function 360, 450
loaders 229
loading times 348
LoadWebsite 178
local 435
Logo component 182
logUpperCase() function 478

M

maintainability 346
map() function 187, 191,

200, 398
mapping object 250
mapping routes in app.jsx 250
mapStateToProps()

function 296
Markdown 474
Material-UI 461
Math.random() function 330
Menu component

building in JSX 195–199
refactoring Link

component 198–199
refactoring Menu

component 197–198
running JSX projects 199

building without JSX 188–195
refactoring 197–198
scaffolding 187–188
structure 187–188

menuOptions property 188
menus array 189, 195
MessageBoard 363, 374
MessageList 375
messages array 478
messages property 375
method requests 464
method-override 467
methods 461
middleware 354, 356, 358, 368,

465–467
mocking 327
Modal component 401–403
model methods, in

Mongoose 470–471
modularizing code with Web-

pack build tool 234–236
module.export global 330
module.exports 373
module.hot.accept()

function 241

modules, in ES6 483
mongo command 442, 469
mongod command 452, 469
MongoDB database

cheatsheet 469
implementing Autocomplete

component 436–441
code 438–441
tests 436–437

implementing autocomplete
with
adding browser scripts 435
creating server

templates 435–436
implementing web

servers 432–435
installing 451–452

Mongoose library, cheatsheet
document methods 471
installing 469
model methods 470–471
schema 470

morgan 366, 467
mounting component lifecycle

events 99
componentDidMount() 100
componentWillMount()

99–100
mounting events 91
mouse events 114
mouseOver event 334
Mozilla Developer Network 290
multiline strings, in ES6 474
multiple attribute 150
mutable state 71, 128
myUtil module 228

N

nativeEvent 122
nave 448
navigating

programmatically 266–267
nesting elements 27–31
Netflix clone

adding servers to 308–323
data structure 313–314
GraphQL schema 314–316
installing GraphQL on

servers 310–313
querying API and saving

responses into
stores 316–321

showing list of movies
321–323

Redux with 281–283
running 303

new Data() method 74
NewMessage 375
Node

Express and, rendering on the
server side from
components 354–362

React on 351–354
Universal JavaScript

with 348–351
node command 356, 449
Node Patterns course 360
Node platform

compiling 454
installing 448

node value 150
node-dev 370
node-static 388
nodemon tool 312, 370
Note element 107
notEmpty() function 370
npm command 448
npm install 196, 199, 203, 212
npm run build 199, 232,

235, 269
nullified 123
nvm (Node Version

Manager) 448

O

object literals, enhanced
475–476

Object.assign() function 280
Object.create() method 475
offsetLeft 205
onChange() method

142, 144, 151
onClick event 112, 221
one-way binding 142, 275
onInput event 144
onKeyUp() method 144, 441
onMouseOver 114–115
onMouseOverCapture 115
onResize 91
onSubmit event 144
opacity state 104, 205
<option> element 149–151
option-name class 437
options property 435
orphaned event handlers 134

INDEX492

P

parentheses 82
passport 467
Password component,

implementing 415–422
code 416–422
render () function 419–422
tests 415–416

Password element 339
password field 146
password modules,

implementing 412–414
password variable 338, 413, 416
Password widget 407
PasswordGenerate 408, 419
PasswordInfo 408, 419
PasswordInput 408, 419
passwords

checking with Jest
Host HTML files 411–412
implementing Password

component 415–422
implementing password

modules 412–414
UI-testing widgets 337–341

PasswordVisibility 408, 419
Pause/Resume button 223
performance, improving 348
persist() method 123
pick() function 414
placeholder property 160
play() method 222
populate() method 471
post hook 243
POST method requests 464
postlearn-react 243
posts array 256
pre hook 243
prelearn-react 243
presentational components, vs.

container 184
preventDefault() method 122
processedRules object 420
Product component 403–404
--production flag 285
promises, in ES6 479–481
prop-types package 167
properties 34–39, 460–461

default in components
165–167

in JSX 49–53
passing event handlers

as 126–129

passing in React Router
268–269

states and 80
types of 167–174

props 69
propTypes property

82, 167–168, 460
proto property 475
prototyping 307
Provider component 286, 295
publicPath 245
pushState 258
PUT method requests 464
PWD variable 312

Q

query strings 467
querying API 316–321
queryKey 258

R

radio buttons 131
radioGroup 146
raw-body 467
React

advantages of using 346–351
better code

maintainability 348
better performance 348
faster loading times 348
proper page indexing

346–347
benefits of 6–15

ecosystem and
community 14–15

simplicity 7–13
speed and testability 13–14

cheatsheet
add-ons 461
components 457, 461–462
installing 456
lifecycle events 458
methods 461
properties 460–461
propTypes 460

disadvantages of 15
installing 447, 456
overview 5
problem solved by 5–6
rendering on servers 434–435

web applications and 15–21
React libraries and render-

ing targets 16–17
React stack 19–21
single-page

applications 18–19
React component methods,

creating
in JSX 53–54

React DOM (document object
model) 456

React Rocks 462
React Router 252–265

browser history 258–259
building bookstores with

project structure 387–390
Webpack

configuration 387–390
creating components

391–404
Cart component 398–400
Checkout component

400–401
Modal component 401–403
Product component

403–404
writing app.jsx files

391–398
creating layout

components 262–265
development setup with

Webpack 259–262
features of 265–269

accessing routers with with-
Router higher-order
component 265–266

navigating
programmatically
266–267

route data 267–268
URL parameters 267–268

hash history 257–258
Host HTML files 390
JSX style 256
passing properties in 268–269

React stack 19–21
react-addons-test-utils

package 334
react-dom 195
react-hot-loader 241
react-redux package 286
react-router 284
react-test-renderer package 342

INDEX 493

React.Component()
function 189

React.createClass()
function 260

React.createElement()
function 260

ReactDOM.findDOMNode()
function 338

ReactDOM.render()
function 188, 204, 254,
375, 393

ReactDOMServer 351
ReactJSX.com 462
readOnly 151
reduce method 290
reducers

combining 289
for movies 290–292

Redux container
enabling 286–287
working with data

React support for unidirec-
tional data flow
275–277

understanding Flux data
architecture 278–279

working with data
library 279–303
action creators 293–294
actions 292–293
combining reducers 289
configuration 283–286
connecting components to

stores 294–297
dependencies 283–286
dispatching an action

297–298
enabling Redux 286–287
Netflix clone 281–283
passing action creators into

component
properties 298–302

reducer for movies
290–292

routes 287–288
running Netflix clone 303

redux-actions library
281, 284, 291

redux-netflix 308
ref attribute 161
ref property 460
refactoring

Link component 198–199
Menu component 197–198

references, using to access
values 159–161

regular-expression pattern 417
remove method 471
render() function, of Password

component 419–422
rendering

children 174–177
HTML pages 355–362

booting up servers 360–362
configuration 357–358
handling errors 360
layout with

Handlebars 358–359
middleware 358
routes 358

on the server side from
components 354–362
HTML pages 355–362
simple text 354–355

React on servers 434–435
shallow 342–343
text 354–355

renderIntoDocument()
function 336, 338

renderToStaticMarkup()
function 353

renderToString() function
352–353

replace() method 192
replaceState() method 461
representational

components 375
req.message.find() function 368
request-header, shortcuts in

Express.js 465
request.accepts(type)

shortcut 465
request.acceptsCharset(charset)

shortcut 465
request.acceptsLanguage(lan-

guage) shortcut 465
request.body shortcut 465
request.cookies shortcut 465
request.fresh shortcut 465
request.get(headerKey)

shortcut 465
request.host shortcut 465
request.ip shortcut 465
request.ips shortcut 465
request.is(type) shortcut 465
request.originalUrl shortcut 465
request.params shortcut 465
request.path shortcut 465
request.protocol shortcut 465

request.query shortcut 465
request.route shortcut 465
request.secure shortcut 465
request.signedCookies

shortcut 465
request.stale shortcut 465
request.subdomains

shortcut 465
request.xhr shortcut 465
request/param 465
requests, in Express.js 465
require() function 250, 303
required properties 460
res.render() function 371
Reset button 223
resize event 131
resolve key 315
resources, in Express.js 467
response-time 467
response.render() function 359
response.send() function 359
responses, in Express.js 465
RESTful APIs (application pro-

gram interfaces) 433–434
rooms array 437
route property 400
Router class 269
Router component, creating in

router.jsx 250–252
router.jsx, creating Router

component in 250–252
router.push(URL) 266
RouterContext 381
routers

accessing with withRouter
higher-order
component 265–266

implementing 247–252
creating route mapping in

app.jsx 250
creating Router compo-

nent in router.jsx
250–252

routes
data 267–268
in Express.js 464–465
in Redux data library

287–288
mapping in app.jsx 250
server-side 368–371

routing, with Backbone
269–272

row-fluid class 217
rules array 422

INDEX494

S

SaaS (software-as-a-service) 424
save method 471
save operation 122
SaveButton 113
scaffolding

of Menu component 187–188
of Timer component 211–213
of Tooltip component

202–204
scaling components

property types 167–174
rendering children 174–177
validation 167–174

schema, of Mongoose 470
scripts block 388
scryRenderedComponentsWith-

Type() function 337
scryRenderedDOMComponents-

WithClass() function 337
scryRenderedDOM-

ComponentsWithTag()
function 336

seed command 431
<select> element 149–151
selected property 145
selection events 114
sendData() method 145
sendFile() function 319
SEO (search engine

optimization) 247, 346
serve-favicon 467
serve-index 467
serve-static 467
server templates, creating

435–436
server-side layout templates, with

Handlebars 371–373
server-side rendering, from

components 354–362
HTML pages 355–362
simple text 354–355

server-side routes 368–371
servers

adding to Netflix clone
308–323
data structure 313–314
GraphQL schema 314–316
installing GraphQL on

servers 310–313
querying API and saving

responses into
stores 316–321

showing list of movies
321–323

booting 360–362
composing components

on 373–375
installing GraphQL on

310–313
rendering React on 434–435
setting up 366–371

configuration 367–368
middleware 368
server-side routes 368–371

See also web servers
service testing 326
serviceBase 475
set method 471
SET_VISIBILITY_FILTER

action 280
setInterval() function 76, 215
setState() function 77, 100, 206,

217, 303
setTimeout() function 479
shallow rendering 342–343
shouldComponentUpdate()

lifecycle event 104–105
shuffle() method 414
signatures. See handler

signatures
simplicity 7–13

component-based
architecture using pure
JavaScript 10–12

declarative over imperative
style 7–10

powerful abstractions 13
skinny arrows 478
slider button 223
slider control element 134
SliderButtons 135
sliderValue state 135
SOAP protocol 305
software-as-a-service. See SaaS
SPA (single-page

application) 18–19,
247, 346

special characters, in JSX 64–65
speed 13–14
spread operators, passing

attributes with 181
standalone browser, in

Babel 454
startTimer() method 215, 218
state argument 290

states
accessing 72–74
overview 71–72
properties and 80
setting initial state 74–76
stateless components

general discussion 81–83
stateful vs. 83–88

updating 76–79
using with events 124–126

static assets 228
static files 467
static middleware 358
stopPropagation() method 122
store property 286
store.dispatch() function 292
stores

connecting components
to 294–297

saving API responses
into 316–321

strength variable 416
strings, multiline 474
strong typing 307
strong-password module 412
style attribute, in JSX 65–66
style property 460
style-loader 233
Stylus stylesheet language,

Express.js and 466
super() method 74
switch/case statement 281, 291
SyntheticEvent, event

objects 120–124

T

tagged strings 318
target property 123
TDD (test-driven

development) 326
template literals, in ES6

473–474
test cases 329
testability 13–14
testing

for Autocomplete
component 436–437

of Password component
415–416

of password modules 412–413
UI with Jest 333–343

finding elements with
TestUtils 336–337

INDEX 495

testing (continued)
shallow rendering 342–343
UI-testing password

widget 337–341
UI with TestUtils 333–343

finding elements with
336–337

shallow rendering 342–343
UI-testing password

widget 337–341
UI-password widgets 337–341
units with Jest 329–333

advantages of 327–328
Jest assertions 332–333
types of 326–327
UI testing with 333–343
UI testing with

TestUtils 333–343
writing unit tests in

Jest 330–332
Webpack builds 236–238

TestUtils 334
finding elements with

336–337
UI testing with 333–343

finding elements with
336–337

shallow rendering 342–343
UI-testing password

widget 337–341
TestUtils.findRenderedDOM-

ComponentWithClass()
function 340

TestUtils.scryRenderedDOM-
ComponentsWithTag()
function 340

text field 146
text, rendering 354–355
<textarea> element 149
then property 317–318
this.isMounted property 461
this.props property 461
this.props,children 209
this.props.dispatch()function

297
this.refs property 461
this.setState() function 205, 418
this.state property 461
time property 84, 218
timeLeft variable 215–216
Timer component 219–220

Button component and
220–222

scaffolding 211–213

structure 211–213
TimerWrapper component

and 215–219
TimerWrapper

component 215–219
title property 169, 315
toBe() function 340
toEqual() function 339
toggle() function 204–206
toJSON() method 471
toLocaleString() method 74
toLowerCase() method 192
tooltip 201
Tooltip component 204–208

render() function 206–208
scaffolding 202–204
structure 202–204
toggle() function 205–206

tooltipNode 205
toString() function 476
touch events 114
transform-react-jsx 410
transition events 114
transpiler, JSX 59–63
trim() method 192
triple curly braces 371
two-way binding 143, 276
type attribute 146
type property 292–294

U

UI (acceptance) testing 327
UI (user interface)

testing password widgets
337–341

testing with Jest 333–343
finding elements with

TestUtils 336–337
shallow rendering 342–343
UI-testing password

widget 337–341
testing with TestUtils 333–343

finding elements with
336–337

shallow rendering 342–343
UI-testing password

widget 337–341
uncontrolled elements, of forms

with change capturing
156–157

without capturing
changes 158

underscore character 179

unidirectional data flow, support
for 275–277

unit testing 326
units, testing with Jest 329–333

advantages of 327–328
Jest assertions 332–333
types of 326–327
UI testing with 333–343
UI testing with TestUtils

333–343
writing tests 330–332

Universal JavaScript 346
Express with 363–382

client-side React code
375–376

composing React
components on the
server 373–375

running apps 378–382
server-side layout templates

with Handlebars
371–373

setting up servers 366–371
setting up Webpack

376–378
with Node 348–351
with React 348–351

unmounting events 91, 105
update method 471
updating

component lifecycle
events 103–105
componentDidUpdate()

105
componentWillReceive-

Props(newProps) 104
componentWillUpdate()

105
shouldComponent-

Update() 104–105
states 76–79

upperCase property 418
url function 193
URL parameters 267–268, 465
URL path 287
url property 435
URL routing 247
urlencoded data format 366
user interface. See UI

V

-V option 464
v property 197
validate method 471

INDEX496

validation 167–174
value attribute 155
value property 130, 145
values

default 161–162
using references to

access 159–161
variables, outputting in JSX

48–49
vhost 467
visibilityFilter value 280
visible variable 416

W

wds script 233
wds-cli script 233
web applications 15–21

React libraries and rendering
targets 16–17

React stack 19–21
single-page applications

18–19
web servers, implementing

432–435
defining RESTful APIs

433–434
rendering React on

servers 434–435
webpack -w command 233
Webpack build tool 229–234

configuring 233–234,
376–378, 387–390

development setup with
259–262

HMR 239–244
installing 231–233
installing dependencies

of 231–233

modularizing code with
234–236

overview 228–229
running 236–238
testing builds 236–238

webpack-dev-server
231, 240, 390

wheel events 114
withRouter component, access-

ing routers with 265–266

X

XSS (cross-site scripting)
attack 428

Z

z-index 206

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

React in Action
by Mark Tielens Thomas

ISBN: 9781617293856
300 pages
$44.99
November 2017

RxJS in Action
by Paul P. Daniels and Luis Atencio

ISBN: 9781617293412
352 pages
$49.99
July 2017

Functional Programming in JavaScript
How to improve your JavaScript programs using
functional techniques

by Luis Atencio

ISBN: 9781617292828
272 pages
$44.99
June 2016

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Secrets of the JavaScript Ninja,
Second Edition
by John Resig, Bear Bibeault, and Josip Maras

ISBN: 9781617292859
464 pages
$44.99
August 2016

Angular 2 Development with TypeScript
by Yakov Fain and Anton Moiseev

ISBN: 9781617293122
456 pages
$44.99
December 2016

Angular in Action
Covers Angular 2

by Jeremy Wilken

ISBN: 9781617293313
310 pages
$44.99
November 2017

R
E
A

C
T
 C

H
E
A
T
S
H

E
E
T
 (

c
o
n
ti

n
u
e
d
)

C
O

M
P

O
N

E
N

T
S

A
D

V
A

N
C

E
D

 C
O

M
P

O
N

E
N

T
S
 (

c
o
n
ti

n
u
e
d
)

E
S
5

v
a
r

L
i
n
k

=

R
e
a
c
t
.
c
r
e
a
t
e
C
l
a
s
s
(
{

d
i
s
p
l
a
y
N
a
m
e
:

'
L
i
n
k
'
,

r
e
n
d
e
r
:

f
u
n
c
t
i
o
n
(
)

{

r
e
t
u
r
n

R
e
a
c
t
.
c
r
e
a
t
e
E
l
e
m
e
n
t
(
'
a
'
,

{
c
l
a
s
s
N
a
m
e
:

'
b
t
n
'
,

h
r
e
f
:

t
h
i
s
.
p
r
o
p
s
.
h
r
e
f
}
,

'
C
l
i
c
k

-
>
'
,

➥

 t
h
i
s
.
p
r
o
p
s
.
h
r
e
f
)

}

}
)

E
S
5
 +

 J
S
X

v
a
r

L
i
n
k

=

R
e
a
c
t
.
c
r
e
a
t
e
C
l
a
s
s
(
{

r
e
n
d
e
r
:

f
u
n
c
t
i
o
n
(
)

{

r
e
t
u
r
n

<
a

c
l
a
s
s
N
a
m
e
=
'
b
t
n
'

h
r
e
f
=
{
t
h
i
s
.
p
r
o
p
s
.
h
r
e
f
}
>
C
l
i
c
k

-
>

t
h
i
s
.
p
r
o
p
s
.
h
r
e
f
<
/
a
>

}

}
)

E
S
6
 +

 J
S
X

c
l
a
s
s

L
i
n
k

e
x
t
e
n
d
s

R
e
a
c
t
.
C
o
m
p
o
n
e
n
t

{

r
e
n
d
e
r
(
)

{

r
e
t
u
r
n

<
a

c
l
a
s
s
N
a
m
e
=
'
b
t
n
'

h
r
e
f
=
{
t
h
i
s
.
p
r
o
p
s
.
h
r
e
f
}
>
C
l
i
c
k

-
>

t
h
i
s
.
p
r
o
p
s
.
h
r
e
f
<
/
a
>

}

}

'

(
C
l
i
c
k
e
d
:

'

+

t
h
i
s
.
s
t
a
t
e
.
c
o
u
n
t
+
'
)
'

)

}

}
)

E
S
5
 +

 J
S
X

v
a
r

L
i
n
k

=

R
e
a
c
t
.
c
r
e
a
t
e
C
l
a
s
s

(
{

p
r
o
p
T
y
p
e
s
:

{

h
r
e
f
:

R
e
a
c
t
.
P
r
o
p
T
y
p
e
s
.
s
t
r
i
n
g

}
,

g
e
t
D
e
f
a
u
l
t
P
r
o
p
s
:

f
u
n
c
t
i
o
n
(
)

{

r
e
t
u
r
n

{

i
n
i
t
i
a
l
C
o
u
n
t
:

0

}

}
,

g
e
t
I
n
i
t
i
a
l
S
t
a
t
e
:

f
u
n
c
t
i
o
n
(
)

{

r
e
t
u
r
n

{
c
o
u
n
t
:

t
h
i
s
.
p
r
o
p
s
.
i
n
i
t
i
a
l
C
o
u
n
t
}
;

}
,

t
i
c
k
:

f
u
n
c
t
i
o
n
(
)

{

t
h
i
s
.
s
e
t
S
t
a
t
e
(
{
c
o
u
n
t
:

t
h
i
s
.
s
t
a
t
e
.
c
o
u
n
t

+

1
}
)

}
,

r
e
n
d
e
r
:

f
u
n
c
t
i
o
n
(
)

{

r
e
t
u
r
n

(

<
a

o
n
C
l
i
c
k
=
{
t
h
i
s
.
t
i
c
k
.
b
i
n
d
(
t
h
i
s
)
}

h
r
e
f
=
"
#
"

c
l
a
s
s
N
a
m
e
=
"
b
t
n
"

h
r
e
f
=
{
t
h
i
s
.
p
r
o
p
s
.
h
r
e
f
}
>

C
l
i
c
k

-
>

{
(
t
h
i
s
.
p
r
o
p
s
.
h
r
e
f

?

t
h
i
s
.
p
r
o
p
s
.
h
r
e
f

:

➥

'
h
t
t
p
s
:
/
/
w
e
b
a
p
p
l
o
g
.
c
o
m
'
)
}

(
C
l
i
c
k
e
d
:

{
t
h
i
s
.
s
t
a
t
e
.
c
o
u
n
t
}
)

<
/
a
>

)

}

}
)

E
S
6
 +

 J
S
X

e
x
p
o
r
t

c
l
a
s
s

L
i
n
k

e
x
t
e
n
d
s

R
e
a
c
t
.
C
o
m
p
o
n
e
n
t

{

c
o
n
s
t
r
u
c
t
o
r
(
p
r
o
p
s
)

{

s
u
p
e
r
(
p
r
o
p
s
)
;

t
h
i
s
.
s
t
a
t
e

=

{
c
o
u
n
t
:

p
r
o
p
s
.
i
n
i
t
i
a
l
C
o
u
n
t
}
;

}

t
i
c
k
(
)

{

t
h
i
s
.
s
e
t
S
t
a
t
e
(
{
c
o
u
n
t
:

t
h
i
s
.
s
t
a
t
e
.
c
o
u
n
t

+

1
}
)
;

}

r
e
n
d
e
r
(
)

{

r
e
t
u
r
n

(

<
a

o
n
C
l
i
c
k
=
{
t
h
i
s
.
t
i
c
k
.
b
i
n
d
(
t
h
i
s
)
}

h
r
e
f
=
"
#
"

c
l
a
s
s
N
a
m
e
=
"
b
t
n
"

h
r
e
f
=
{
t
h
i
s
.
p
r
o
p
s
.
h
r
e
f
}
>

C
l
i
c
k

-
>

{
(
t
h
i
s
.
p
r
o
p
s
.
h
r
e
f

?

t
h
i
s
.
p
r
o
p
s
.
h
r
e
f

:

'
h
t
t
p
s
:
/
/
w
e
b
a
p
p
l
o
g
.
c
o
m
'
)
}

(
C
l
i
c
k
e
d
:

{
t
h
i
s
.
s
t
a
t
e
.
c
o
u
n
t
}
)

<
/
a
>

)

}

} L
i
n
k
.
p
r
o
p
T
y
p
e
s

=

{

i
n
i
t
i
a
l
C
o
u
n
t
:

R
e
a
c
t
.
P
r
o
p
T
y
p
e
s
.
n
u
m
b
e
r

}

L
i
n
k
.
d
e
f
a
u
l
t
P
r
o
p
s

=

{

i
n
i
t
i
a
l
C
o
u
n
t
:

0

}

A
D

V
A

N
C

E
D

 C
O

M
P

O
N

E
N

T
S

O
p
ti

o
n
s
 (

E
S
5
)

Ty
p
e
 v

a
li
d
a
ti
o
n
 i
n
 d

e
ve

lo
p
m

e
n
t

m
o
d
e
—
p
r
o
p
T
y
p
e
s

o
b
j
e
c
t

O
b
je

c
t

o
f

d
e
fa

u
lt
 p

ro
p
e
rt

ie
s
—
g
e
t
D
e
f
a
u
l
t
P
r
o
p
s

f
u
n
c
t
i
o
n
(
)

O
b
je

c
t

o
f
th

e
 i
n
it
ia

l
s
ta

te
—
g
e
t
I
n
i
t
i
a
l
S
t
a
t
e

f
u
n
c
t
i
o
n
(
)

E
S
5

v
a
r

L
i
n
k

=

R
e
a
c
t
.
c
r
e
a
t
e
C
l
a
s
s

(
{

p
r
o
p
T
y
p
e
s
:

{

h
r
e
f
:

R
e
a
c
t
.
P
r
o
p
T
y
p
e
s
.
s
t
r
i
n
g

}
,

g
e
t
D
e
f
a
u
l
t
P
r
o
p
s
:

f
u
n
c
t
i
o
n
(
)

{

r
e
t
u
r
n

{

i
n
i
t
i
a
l
C
o
u
n
t
:

0

}

}
,

g
e
t
I
n
i
t
i
a
l
S
t
a
t
e
:

f
u
n
c
t
i
o
n
(
)

{

r
e
t
u
r
n

{
c
o
u
n
t
:

t
h
i
s
.
p
r
o
p
s
.
i
n
i
t
i
a
l
C
o
u
n
t
}

}
,

t
i
c
k
:

f
u
n
c
t
i
o
n
(
)

{

t
h
i
s
.
s
e
t
S
t
a
t
e
(
{
c
o
u
n
t
:

t
h
i
s
.
s
t
a
t
e
.
c
o
u
n
t

+

1
}
)

}
,

r
e
n
d
e
r
:

f
u
n
c
t
i
o
n
(
)

{

r
e
t
u
r
n

R
e
a
c
t
.
c
r
e
a
t
e
E
l
e
m
e
n
t
(

'
a
'
,

{
c
l
a
s
s
N
a
m
e
:

'
b
t
n
'
,

h
r
e
f
:

'
#
'
,

h
r
e
f
:

t
h
i
s
.
p
r
o
p
s
.
h
r
e
f
,

o
n
C
l
i
c
k
:

t
h
i
s
.
t
i
c
k
.
b
i
n
d
(
t
h
i
s
)
}
,

'
C
l
i
c
k

-
>
'
,

(
t
h
i
s
.
p
r
o
p
s
.
h
r
e
f

?

t
h
i
s
.
p
r
o
p
s
.
h
r
e
f

:

'
h
t
t
p
s
:
/
/
w
e
b
a
p
p
l
o
g
.
c
o
m
'
)
,

	React Quickly
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Who this book is for (read this!)
	What this book is not (read this too!)
	How to use this book
	Source code
	Errata
	Book forum

	about the author
	about the cover
	Part 1: React foundation
	Chapter 1: Meeting React
	1.1 What is React?
	1.2 The problem that React solves
	1.3 Benefits of using React
	1.3.1 Simplicity
	1.3.2 Speed and testability
	1.3.3 Ecosystem and community

	1.4 Disadvantages of React
	1.5 How React can fit into your web applications
	1.5.1 React libraries and rendering targets
	1.5.2 Single-page applications and React
	1.5.3 The React stack

	1.6 Your first React code: Hello World
	1.7 Quiz
	1.8 Summary
	1.9 Quiz answers

	Chapter 2: Baby steps with React
	2.1 Nesting elements
	2.2 Creating component classes
	2.3 Working with properties
	2.4 Quiz
	2.5 Summary
	2.6 Quiz answers

	Chapter 3: Introduction to JSX
	3.1 What is JSX, and what are its benefits?
	3.2 Understanding JSX
	3.2.1 Creating elements with JSX
	3.2.2 Working with JSX in components
	3.2.3 Outputting variables in JSX
	3.2.4 Working with properties in JSX
	3.2.5 Creating React component methods
	3.2.6 if/else in JSX
	3.2.7 Comments in JSX

	3.3 Setting up a JSX transpiler with Babel
	3.4 React and JSX gotchas
	3.4.1 Special characters
	3.4.2 data- attributes
	3.4.3 style attribute
	3.4.4 class and for
	3.4.5 Boolean attribute values

	3.5 Quiz
	3.6 Summary
	3.7 Quiz answers

	Chapter 4: Making React interactive with states
	4.1 What are React component states?
	4.2 Working with states
	4.2.1 Accessing states
	4.2.2 Setting the initial state
	4.2.3 Updating states

	4.3 States and properties
	4.4 Stateless components
	4.5 Stateful vs. stateless components
	4.6 Quiz
	4.7 Summary
	4.8 Quiz answers

	Chapter 5: React component lifecycle events
	5.1 A bird’s-eye view of React component lifecycle events
	5.2 Categories of events
	5.3 Implementing an event
	5.4 Executing all events together
	5.5 Mounting events
	5.5.1 componentWillMount()
	5.5.2 componentDidMount()

	5.6 Updating events
	5.6.1 componentWillReceiveProps(newProps)
	5.6.2 shouldComponentUpdate()
	5.6.3 componentWillUpdate()
	5.6.4 componentDidUpdate()

	5.7 Unmounting event
	5.7.1 componentWillUnmount()

	5.8 A simple example
	5.9 Quiz
	5.10 Summary
	5.11 Quiz answers

	Chapter 6: Handling events in React
	6.1 Working with DOM events in React
	6.1.1 Capture and bubbling phases
	6.1.2 React events under the hood
	6.1.3 Working with the React SyntheticEvent event object
	6.1.4 Using events and state
	6.1.5 Passing event handlers as properties
	6.1.6 Exchanging data between components

	6.2 Responding to DOM events not supported by React
	6.3 Integrating React with other libraries: jQuery UI events
	6.3.1 Integrating buttons
	6.3.2 Integrating labels

	6.4 Quiz
	6.5 Summary
	6.6 Quiz answers

	Chapter 7: Working with forms in React
	7.1 The recommended way to work with forms in React
	7.1.1 Defining a form and its events in React
	7.1.2 Defining form elements
	7.1.3 Capturing form changes
	7.1.4 Account field example

	7.2 Alternative ways to work with forms
	7.2.1 Uncontrolled elements with change capturing
	7.2.2 Uncontrolled elements without capturing changes
	7.2.3 Using references to access values
	7.2.4 Default values

	7.3 Quiz
	7.4 Summary
	7.5 Quiz answers

	Chapter 8: Scaling React components
	8.1 Default properties in components
	8.2 React property types and validation
	8.3 Rendering children
	8.4 Creating React higher-order components for code reuse
	8.4.1 Using displayName: distinguishing child components from their parent
	8.4.2 Using the spread operator: passing all of your attributes
	8.4.3 Using higher-order components

	8.5 Best practices: presentational vs. container components
	8.6 Quiz
	8.7 Summary
	8.8 Quiz answers

	Chapter 9: Project: Menu component
	9.1 Project structure and scaffolding
	9.2 Building the menu without JSX
	9.2.1 The Menu component
	9.2.2 The Link component
	9.2.3 Getting it running

	9.3 Building the menu in JSX
	9.3.1 Refactoring the Menu component
	9.3.2 Refactoring the Link component
	9.3.3 Running the JSX project

	9.4 Homework
	9.5 Summary

	Chapter 10: Project: Tooltip component
	10.1 Project structure and scaffolding
	10.2 The Tooltip component
	10.2.1 The toggle() function
	10.2.2 The render() function

	10.3 Getting it running
	10.4 Homework
	10.5 Summary

	Chapter 11: Project: Timer component
	11.1 Project structure and scaffolding
	11.2 App architecture
	11.3 The TimerWrapper component
	11.4 The Timer component
	11.5 The Button component
	11.6 Getting it running
	11.7 Homework
	11.8 Summary

	Part 2: React architecture
	Chapter 12: The Webpack build tool
	12.1 What does Webpack do?
	12.2 Adding Webpack to a project
	12.2.1 Installing Webpack and its dependencies
	12.2.2 Configuring Webpack

	12.3 Modularizing your code
	12.4 Running Webpack and testing the build
	12.5 Hot module replacement
	12.5.1 Configuring HMR
	12.5.2 Hot module replacement in action

	12.6 Quiz
	12.7 Summary
	12.8 Quiz answers

	Chapter 13: React routing
	13.1 Implementing a router from scratch
	13.1.1 Setting up the project
	13.1.2 Creating the route mapping in app.jsx
	13.1.3 Creating the Router component in router.jsx

	13.2 React Router
	13.2.1 React Router’s JSX style
	13.2.2 Hash history
	13.2.3 Browser history
	13.2.4 React Router development setup with Webpack
	13.2.5 Creating a layout component

	13.3 React Router features
	13.3.1 Accessing router with the withRouter higher-order component
	13.3.2 Navigating programmatically
	13.3.3 URL parameters and other route data
	13.3.4 Passing properties in React Router

	13.4 Routing with Backbone
	13.5 Quiz
	13.6 Summary
	13.7 Quiz answers

	Chapter 14: Working with data using Redux
	14.1 React support for unidirectional data flow
	14.2 Understanding the Flux data architecture
	14.3 Using the Redux data library
	14.3.1 Redux Netflix clone
	14.3.2 Dependencies and configs
	14.3.3 Enabling Redux
	14.3.4 Routes
	14.3.5 Combining reducers
	14.3.6 Reducer for movies
	14.3.7 Actions
	14.3.8 Action creators
	14.3.9 Connecting components to the store
	14.3.10 Dispatching an action
	14.3.11 Passing action creators into component properties
	14.3.12 Running the Netflix clone
	14.3.13 Redux wrap-up

	14.4 Quiz
	14.5 Summary
	14.6 Quiz answers

	Chapter 15: Working with data using GraphQL
	15.1 GraphQL
	15.2 Adding a server to the Netflix clone
	15.2.1 Installing GraphQL on a server
	15.2.2 Data structure
	15.2.3 GraphQL schema
	15.2.4 Querying the API and saving the response into the store
	15.2.5 Showing the list of movies
	15.2.6 GraphQL wrap-up

	15.3 Quiz
	15.4 Summary
	15.5 Quiz answers

	Chapter 16: Unit testing React with Jest
	16.1 Types of testing
	16.2 Why Jest (vs. Mocha or others)?
	16.3 Unit testing with Jest
	16.3.1 Writing unit tests in Jest
	16.3.2 Jest assertions

	16.4 UI testing React with Jest and TestUtils
	16.4.1 Finding elements with TestUtils
	16.4.2 UI-testing the password widget
	16.4.3 Shallow rendering

	16.5 TestUtils wrap-up
	16.6 Quiz
	16.7 Summary
	16.8 Quiz answers

	Chapter 17: React on Node and Universal JavaScript
	17.1 Why React on the server? And what is Universal JavaScript?
	17.1.1 Proper page indexing
	17.1.2 Better performance with faster loading times
	17.1.3 Better code maintainability
	17.1.4 Universal JavaScript with React and Node

	17.2 React on Node
	17.3 React and Express: rendering on the server side from components
	17.3.1 Rendering simple text on the server side
	17.3.2 Rendering an HTML page

	17.4 Universal JavaScript with Express and React
	17.4.1 Project structure and configuration
	17.4.2 Setting up the server
	17.4.3 Server-side layout templates with Handlebars
	17.4.4 Composing React components on the server
	17.4.5 Client-side React code
	17.4.6 Setting up Webpack
	17.4.7 Running the app

	17.5 Quiz
	17.6 Summary
	17.7 Quiz answers

	Chapter 18: Project: Building a bookstore with React Router
	18.1 Project structure and Webpack configuration
	18.2 The host HTML file
	18.3 Creating components
	18.3.1 Main file: app.jsx
	18.3.2 The Cart component
	18.3.3 The Checkout component
	18.3.4 The Modal component
	18.3.5 The Product component

	18.4 Launching the project
	18.5 Homework
	18.6 Summary

	Chapter 19: Project: Checking passwords with Jest
	19.1 Project structure and Webpack configuration
	19.2 The host HTML file
	19.3 Implementing a strong password module
	19.3.1 The tests
	19.3.2 The code

	19.4 Implementing the Password component
	19.4.1 The tests
	19.4.2 The code

	19.5 Putting it into action
	19.6 Homework
	19.7 Summary

	Chapter 20: Project: Implementing autocomplete with Jest, Express, and MongoDB
	20.1 Project structure and Webpack configuration
	20.2 Implementing the web server
	20.2.1 Defining the RESTful APIs
	20.2.2 Rendering React on the server

	20.3 Adding the browser script
	20.4 Creating the server template
	20.5 Implementing the Autocomplete component
	20.5.1 The tests for Autocomplete
	20.5.2 The code for the Autocomplete component

	20.6 Putting it all together
	20.7 Homework
	20.8 Summary

	Appendix A: Installing applications used in this book
	Installing React
	Installing Node.js
	Installing Express
	Installing Bootstrap
	Installing Browserify
	Installing MongoDB
	Using Babel to compile JSX and ES6
	Node.js and ES6
	Standalone browser Babel

	Appendix B: React cheatsheet
	Installation
	React
	React DOM

	Rendering
	ES5
	ES5+JSX

	Server-side rendering
	Components
	ES5
	ES5 + JSX
	ES6 + JSX

	Advanced components
	Options (ES5)
	ES5
	ES5 + JSX
	ES6 + JSX

	Lifecycle events
	Sequence of lifecycle events (inspired by http://react.tips)

	Special properties
	propTypes
	Custom validation

	Component properties and methods
	Properties
	Methods

	React add-ons
	React components

	Appendix C: Express.js cheatsheet
	Installing Express.js
	Generator
	Usage
	Options

	Basics
	HTTP verbs and routes
	Requests
	Request-header shortcuts
	Response
	Handler signatures
	Stylus and Jade
	Body
	Static
	Connect middleware
	Other popular middleware
	Resources

	Appendix D: MongoDB and Mongoose cheatsheet
	MongoDB
	MongoDB console
	Installing Mongoose
	Mongoose basic usage
	Mongoose schema
	Create, read, update, delete (CRUD) Mongoose example
	Mongoose model methods
	Mongoose document methods

	Appendix E: ES6 for success
	Default parameters
	Template literals
	Multiline strings
	Destructuring assignment
	Enhanced object literals
	Arrow functions
	Promises
	Block-scoped constructs: let and const
	Classes
	Modules
	Using ES6 today with Babel
	Other ES6 features

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

