“Modern PHP” (2015)

Notes open for creative commons use @ developer blog: https://unfoldkyle.com, github:
SmilingStallman, email: kmiskell@protonmail.com

Language Features
The New PHP
-With additions of features like namespaces, closures, traits, etc., PHP has advanced far in
encapsulation and allows moving away from massive monolithic apps.
-For version control, check out Vagrant. For provision tools, look into Ansible, Chef, and Puppet.
-Composer allows for easy dependency management
-PSR by PHP-FIG community working group has become widely accepted PHP coding standard
-PHPUnit as powerful unit testing tool
-PHP FastCGI process manager
-PHP engine — parses, interprets, and executes PHP code.
-Addition of HipHop Virtual Machine PHP engine, built by Facebook. Exists as alt to older Zend
engine. FB also built Hack, white is built on top of core PHP, as a PHP version of Typescript of sorts,
with static typing, new data structures, etc.. Both use JIT (Just In Time) compiler for increased speed.

-New features make PHP much more suitable for developing command line tools

Namespace Basics
-Organize PHP files into a virtual hierarchy similar to standard filesystem directory structures

-Each namespace has it’s own global scope. Used in packages to prevent name clashes across files and
packages, as well as package uploaders. Vendor + package specific namespaces.

-Namespaces allow import of code from any other package, whether created by another user (ex.
Laravel) or created in house, providing a sandboxed execution environment, to fully prevent name
clashes, as well as organize code, to make easy for re-use, etc..

-Sub-namespaces prevent clashes inside same main namespace by further breaking namespace down

-Declare namespace as first line in PHP file via syntax:
namespace MyVendor\MyNamespace;

-After deceleration of namespace, all code under this declaration now exists in defined namespace. Any
other file that also declares that same namespace also exists in same namespace as other same
namespace files.

-A namespace acts as an encapsulation platform for grouping and organizing PHP classes together, just
how directories organize and group files.

-Recommended to store PHP files in directory structure matching namespace hierarchy

https://unfoldkyle.com/
mailto:kmiskell@protonmail.com

-To access methods, etc. in namespaceXFile php from namespaceYFile php, must first import Y into X
via standard require_once, include, etc. import.s

-Once import Y into X, can access ¥ namespace members in multiple way:
/lfilel .php
namespace SmilingStallman\Main\Sub;
function print_me(){ echo ‘filel’; }

/lfile2 php

namespace SmilingStallman\Main;
include ‘filel php’;

function print_me(){ echo ‘file2’; }

//a) unqualified name — similar to referencing file via relative filename
print_me() /Iprints ‘file2’, referencing print_me() in current \Main namespace

//b) qualified name — similar to relative file path, where call in relation to current namespace
Sub\print_me(); /Iprints ‘filel’. Note that do not call with \Main, as already in \Main

/[c) fully qualified name — similar to absolute (full) file path, where call by full namespace hierarchy
\SmilingStallman\Main\Sub\print_me() /Iprints ‘filel’

Namespace Imports and Aliases
-PHP use is an operator for bringing something from another namespace into current namespace
-Syntax: use \Main\Sub\someClass; /limport with fully qualified name

use \Main\Sub\someFunction;

-Note that PHP also uses use to inherit traits in classes and inherit variables in closures. This is just bad
design, though, so don’t get the uses of use confused.

-Put use statements at top of file, just under namespace declaration. use must be called in global scope
only.

-Since this brings Y into X, this could again result in name clashes, hence use is often used with the as
-Syntax: use function \Main\Sub\SomeFunction as AnotherFunction;
AnotherFunction();

-Even with as name clashes can still occur, so comprehended to give unique as alias via:
use \Main\Sub\SomeClass as SubSomeClass; /Iprepend file/class name

-Can import classes, const, and functions, each with own syntax
use \Main\Sub\someClass s
new someClass();s

use function Sub\someFunction;
someFunction();

use const Sub\someConst;
echo someConst;

-Each of above can also be combine with as aliasing
Multiple Namespaces

Can declare multiple namespaces in one file, but recommended against, as results in multi classes per
file, etc.

<?php

namespace Foof }
namespace Bar{ }
Global Namespace

-When don’t declare namespace for file, still exists in namespace, the default PHP global namespace

Autoloading
-Namespaces provide basis for autoloading, as to be discussed later in further detail

