
Laravel 6

Notes open for creative commons use @ developer blog: https:// unfoldkyle .com , github:
SmilingStallman, email: kmiskell@protonmail.com

Learning Resources
Primary: Official Docs, https://laravel.com/docs/6.x
Secondary: https://laracasts.com/

Intro

-PHP MVC framework based on Symfony with version 1.0 in 2011, and current version (6.13)

-Built in authentication, restful routing, lightweight templating through Blade templating
engine, unit testing supported out of box, wide array of OO libraries built in.

-Built in command line interface through Artisan

-Highly modularized packaging system with dedicated dependency manager

-Prepare SQL statements only (preventing sql injection), as well as many other security
features

-General flow: User submits request for page. Laravel sees request and routes to proper
controller based on config in routes.php. Controller, which holds domain knowledge and
business logic, gets request. Back-end logic runs, controller passes data to view, then view
loads and is displayed to user.

-Note that somePage.php and somePageController.php are separated, so controller acts as
de-coupled between view and back-end logic.

-Laravel 6 requires PHP 7.2 (released Nov 2017) or higher

-Using a framework like laravel lets you not re-invent the wheel, handles security well by
default, can provide performance updates, and makes extension easy via plugins. It also
standardizes code when used in multi-projects, files, etc. by providing a common design and
implementation.

Installation
-Install PHP, MySQL, Composer, Laravel

https://www.digitalocean.com/community/tutorials/how-to-install-linux-nginx-mariadb-php-
lemp-stack-on-debian-10

https://getcomposer.org/download/

https://laravel.com/docs/6.x#installation

https://kylemiskell.com/
https://laravel.com/docs/6.x#installation
https://getcomposer.org/download/
https://www.digitalocean.com/community/tutorials/how-to-install-linux-nginx-mariadb-php-lemp-stack-on-debian-10
https://www.digitalocean.com/community/tutorials/how-to-install-linux-nginx-mariadb-php-lemp-stack-on-debian-10
https://laracasts.com/
https://laravel.com/docs/6.x
mailto:kmiskell@protonmail.com
https://kylemiskell.com/
https://kylemiskell.com/

https://laracasts.com/series/laravel-6-from-scratch/episodes/3

-If Laravel install complains about missing ext-zip missing, install via:
 sudo apt-get install php-zip

-On Debian, set $PATH by adding below to ~/.bashrc
 export PATH=”$HOME/.config/composer/vendor/bin:$PATH”

Why Use in Building API
-MVC works well for building properly designed API
-Eloquent ORM through Artisan allows for auto-creation of models based on table existing
scheme and allows proper DB layer
-Automated unit test
-Fast, simple, clean routing
-Managed queuing during high load times to increase speed
-Easy and quick autoloading

Composer, Namespaces, and Autoloading
-Knowledge on all of these will be required for aptly using Laravel. See PHP7.odt notes for
info on these under sections, “Advanced PHP,” and, “Composer”

New Project
-Create new laravel project: laravel new projectName

-On first attempt to create new on Debian, PHP was missing dependencies. Install via:
 sudo apt-get install php-mbstring
 sudo apt-get install php-dom

-Creation will create folder projectName with all required dependencies, as well as template
html page, similar to React via create-react-app

-Laravel comes with config for local dev server for project, typically running on
http://127.0.0.1:8000. From project dir, start via: php artisan serve

-First project might take a long to build, but after first, dependencies cached, and thus new is
almost instant.

Configuration

-All config files stored in config project folder. Ex. config/app.php, session.php

Env Config
-Laravel project folder contains a .env file which contains env config.
-Do not commit as different devs might have different dev environments

-Useful to create template .env.example file with commit, to serve as basis for dev env config
for other devs.

http://127.0.0.1:8000/
https://laracasts.com/series/laravel-6-from-scratch/episodes/3?autoplay=true

-Holds config settings in style:
 DB_HOST=127.0.0.1
 APP_URL=http://localhost
 SOME_PROP=”value with spaces”

-Make sure that proper changes for prod vs dev env set in .env when prod pushing

-Can get .env values in PHP either through super-global $_ENV[‘SOME_KEY’]
-Can also get via global Laravel function env(‘SOME_KEY’, optional-val) where optional-val
is returned if env var with SOME_KEY does not exist.

-Can get current app env from APP_ENV key through App facade call of App::environment()
(ex. local, ex. staging)
-Can pass in ‘environment_name’ string or [‘local’, ‘staging’, ‘otherEnv’] string array to
environment(), which then returns bool if current env matches

Hiding Env Vars
-.env has a bool APP_DEBUG var. If true, uncaught exception will result in debug page
showing all env vars and vals

-To hide vars (ex. on prod), add a ‘debug_blacklist’ assoc array containing details to hide as
contents to existing returned array in config/app.php, in form:

return [

 // ...

 'debug_blacklist' => [
 '_ENV' => [
 'APP_KEY',
 'DB_PASSWORD',
],

 '_SERVER' => [
 'APP_KEY',
 'DB_PASSWORD',
],

 '_POST' => [
 'password',
],
],
];

-As seen above, some env vars also available to $_SERVER so will need to blacklist there as
well, if so

Accessing Config Values
-Can access config values from files in config dir from global laravel function

config(‘filename.prop_name) , which takes in optional second arg to be returned if config var
does not exist
 -ex. $zone = config(‘app.timezone’) //pulls from config/app.php

Config Caching
-Calling php artisan config:cache via terminal will take all existing config files and combine
into single config file

-As once done, combined config file will be called instead of .env, which is bad for dev env as
.env could change on dev. Thus only cache for prod.

Maintenance Mode
-Can put app into maintenance mode, which generates custom temp view for all app
requests, with default view being page displaying 503 | Service Unavailable
-Useful for when updating, perfoming maintenance, etc. on app

-Enable via:
 php artisan down --message=”upgrading DB” --retry=60 --allow=127.0.0.1
-Last three args are optional. Can have multi allow=… allow=… to allow specific ip to access
normal page even during maintenance mode.

-Disable via: php artisan up

-To create custom maintenance mode page to display instead of default, created file at
resources/views/errors/503.blade.php

-If need zero downtime deployment and maintenance, consider using Laravel service
Envoyer

Directory Structure

App Dir
-Core code for app including controllers, middleware, exceptions, providers, etc.

Bootstrap Dir
-Bootstrapping – loader first run on request, responsible for loading rest of core app code

-Contains app.php which handles bootstrapping the framework
-Also contains a cache dir for all cache files (services.php, routes.php, etc)

Database Dir
-DB migrations, model factors, and seeds. Optionally can use to hold a SQLite DB.

Public Dir
-Contains all assets (JS, CSS, images, etc) and index.php, which is entry point for all
requests to app and configs autoloading

Resources Dir

-Views, language files, and un-compiled assets from LESS, SASS, JS, etc.

Routes Dir
-All routes for app
-web.php is main route file and includes middleware for handling auth, session state, cookie
encryption, etc.

-api.php routes for stateless routes for routes used by RouteServiceProdvider in api
middleware

-console.php defines Closure based console commands and defines console based entry
points into app

-channels.php holds all broadcasting channels supported by app

Storage Dir
-Compiled Blade templates, file based sessions, file caches, and other framework generated
files

-Subdirs: app holds files generated by app, framework for framework generated files and
caches, logs for app logs

-storage/app/public user-generated files (ex. avatars). Should create symbolic link at
public/storage which points to this dir. Create via php artisan storage:link

Tests Dir
-All automated tests with example test provided by PHPUnit

Vendor Dir
-All composer dependencies

App Dir subdirs
-Namespace App

-Broadcasting dir – all broadcast channels for app.

-Console dir – Provides mechanisms to interact with app. All Artisan cmds for app. Console
Kernel. Artisan files where scheduled tasks defined.

-Events dir – houses event classes. Events can be used to alert diff parts of app that action
has occurred.

-Exceptions dir – app exception handler. Store exceptions here. Mod Handler class in this dir
to change how exceptions logged and rendered.

-Http dir - Provides mechanisms to interact with app. Controllers, middleware, form requests.
Bulk of files with logic for requests go here.

-Jobs dir – holds queueable jobs for app. Jobs can set to be run synch or asynch. Synch jobs

here.

-Listeners dir – classes that handle events here. Listeners receive event instance and
respond with logic.

-Mail dir – classes that represent emails sent by app. Mail objects encapsulate logic for
building email in class that can be sent using Mail::send method

-Notifications dir – All transactions notification for app. Laravel can send notifications via
email, Slack, SMS, stored in DB, etc..

-Policies dir – auth policy classes for app. Policies used to set if user can perform a given
action on a resources

-Providers dir – service providers for app, which bootstrap app by binding services in service
container, registering events, or any other task to prep app for incoming requests.

-Rules dir – custom validation objects for app

Valet & Homestead

-Valet is mac only. Development environment managing nginx, allowing local access to env
via tunnels, uses only 7mb, provides support for wide array of frameworks, etc.

-Alt for win/linux is Homestead. Homestead uses Vagrant, which creates and manages virtual
machines through VMware, Virtualbox, etc..

-Homestead itself is a pre-packaged Vagrant “box” set up for PHP and Laravel. Quicker to set
up than setting up env manually

COME BACK MORE TO THIS AND SET UP ENV AFTER GO FURTHER IN LARAVEL
BASICS

Deployment

-Root directory for webserver should be set to my_project/public which holds index.php, which
starts Laravel, includes autoloading for dependencies, requires Bootstrap, and serves as front
controller for all HTTP requests entering app

-Ensure project storage and bootstrap/cache dir have write permissions

-If did not build project with laravel new (aka composer), set app key for security modules via:
 php artisan key:generate

-Additional useful config (ex. timezone) in my_project/config/app.php

-Depending on project, also might want to configure my_project/config/cache.php,

my_project/config/database.php, and my_project/config/session.php

-For security reasons, always host laravel projects in the root folder for the “web directory”
(ex. /var/www/). Example:

server {
 listen 80;
 listen [::]:80;

 root /var/www/html/quickstart/public;
 index index.php index.html index.htm index.nginx-debian.html;

 server_name example.com www.example.com;

 location / {
 try_files $uri $uri/ /index.php?$query_string;
 }
}

-See full example of starting nginx sites-available file at:
https://laravel.com/docs/6.x/deployment

Optimization
-Do not run any of following in dev branch, only prod

-Optimize Composer’s autoloader map for quick file finding and loading:
 composer install --optimize-autoloader –no-dev

-Combine all config files into single file:
 php artisan config:cache

-If large app with many route, combine all route registrations into single method call:
 php artisan route:cache

For more details on deployment:
https://www.digitalocean.com/community/tutorials/how-to-deploy-a-laravel-application-with-
nginx-on-ubuntu-16-04

Request Lifecyle

Lifecyle Overview
-Entry point for app is public/index.php. All requests directed here via nginx sites-available
config. Index.php loads composer generated autoloader and gets instance of app from
bootstrap/app.php.

-Once app bootstrapped and loaded, request sent to either HTTP (app/Http/Kernel.php) or
console kernel (depending on request origin). HTTP kernel includes bootstrappers to config
error handling, logging, detect app env, etc. Also has list of middleware requests mass pass

https://www.digitalocean.com/community/tutorials/how-to-deploy-a-laravel-application-with-nginx-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-deploy-a-laravel-application-with-nginx-on-ubuntu-16-04
https://laravel.com/docs/6.x/deployment

through before hitting app logic (read/write session, verify CSRF token, etc.). Also handles
sending back response through similar steps.

-During kernel bootstrapping, service providers loaded. These handle all the boostraping for
framework components.

-Service providers configured in config/app.php in the providers array. Providers first all
registered via register method, then boot method called.

-Once app bootstrapped and all service providers registered, requent handed off to router for
dispatching to route or controller, with needed running of route specific middleware as well.

-Summary: index.php gets request, autoloads Laravel classes, and gets instance of app.
HTTP kernel then bootstraps configs and sets up middleware. Service providers then loaded,
and request handed off to proper route/controller for processing. Response then passes
through any needed middleware and sent back to user.

-Add custom bootstrapping in AppServiceProvider

