
JavaScript ES9 & Beyond

Notes open for creative commons use @ developer blog: https://unfoldkyle.com, github: SmilingStallman,
email: kmiskell@protonmail.com

Learning Sources
Eloquent JavaScript (3 rd ed) ← Primary
MDN Web Docs – MDN Web Docs – Javascript ← Secondary
JS Dev Docs ← Reference

Note on order of notes: order of note sections follow “Eloquent JavaScript,” structure, with some
additions of info from MDN and other sources

Intro to Javascript

Javascript 101
-Key for dynamic (show different things in different circumstances) content updating. Site that
doesn’t change = static.

-Scripting lang - interpreted at runtime vs compiled. Executed sequentially.

-API - Application Programming Interface. Built on top of core of language. Allow interaction
between core code and more intricate systems (ex. Google Maps) by acting as an in between with
ready made components available for use.

-Browser API - exists in web browser. Much of these add additional features (ex. Audio API) or
provide additional info to sites (ex. Geolocation API)
-Third Party API - must be added to browser. Ex. Twitter API, Google Maps API

-JS runs after HTML & CSS put together
-Separate tabs run in separate execution env for sandbox-like security

-Client-side code will be executes and updates within the browser

Script Element
-<script></script> - element contains JS code w/i HTML doc. Similar to css <style> elm. Internal
JS. Avoid using as inefficient and messy.

-<script src=”sourceLocation.js” asysnc> - for linking to external JS source file. asynch tells
browser to keep loading HTML past JS, so all HTML loaded before JS runs (prevents errors)

-asynch vs defer scripts - asynch will exe as soon as finished downloading. If multi scripts, could
exe in various orders. Use when scripts run fine independently. defer scripts load in order of
appearance in code and wait to exe until previous script loaded. Use when scripts have inter-
dependencies.

Debugging Basics
-Javascript dev console in Firefox will display syntax errors from code and specify line of error.
Node console also does this.
-JS = case sensitive
-null - no value

mailto:kmiskell@protonmail.com
https://kylemiskell.com/
https://devdocs.io/javascript/
https://developer.mozilla.org/en-US/docs/Learn/JavaScript
https://developer.mozilla.org/en-US/docs/Learn/JavaScript
https://developer.mozilla.org/en-US/docs/Learn/JavaScript
https://eloquentjavascript.net/
https://eloquentjavascript.net/
https://eloquentjavascript.net/

-undefined – has value, but essentially escape value

Values, Types & Operators

Numbers and Arithmetic Operators

General prog lang number types:
-int - whole num
-float (floating point) - decimal
-double - higher precision decimals
-binary - 0, 1
-octal - base 8 number
-hexadecimal - base 16 num, 0-9 then a-f in each column

-JS only uses number data type, specified by var, let, or const , so do not need to specify above. All
numbers = 64 bits in JS. Note: 64 bits = high precision, but still not infinite.

-Can shorthand numbers via 1.234e8, etc.

-To see what data type item is, run typeof dataName; on. typeof is a unary operator.

-Typical arithmetic operators +, -, /, *, % (modulo, aka mod, ie remainder of), ordered by typical
order of ops via parentheses.
-increment: ++
-decrement: --

-Special numbers: Infinity, -Infinity, NaN (Not a Number (ex. 0 / 0 = NaN))

Assignment Operators
x+= 4 shorthand for x = x + 4;
-Can also do -=, *=, /=, --,or ++

Comparison Operators
>, <, >=, <= == or === //equal to. Can be used on strings. !== //not equal to
-Return boolean value
-Note that == compares by identity, not property
- === compares the value of two objects, but only works on primitives, not objects

Logical Operators
&& - AND || - OR ! - NOT
-NOT example - if (! (season === “winter” || climate === “polar)){…}

-Ternary Operator - Tests a condition and runs code A if true, B if false. Good if-else shorthand.
-Pseudo-code: (condition) ? run this code : run this code instead

-Order of operations, highest to lowest: comparison operators, &&, ||

Strings
-Can set value with single quotes, double quotes, or backticks (`)
-Can set stringX to have StringY value via: stringX = stringY;

-Quote pairs set within quote set will be read as part of string, not triggered as reserved char

-Unclosed quote (ex. “) within string set will confuse to where string ends/starts, so set as with
escape char as \”

-New line via escape char: \n
-Backslash via escape char: \\

-Can concat string values with +, either with string value, name of initialized string, or combo of

-Can convert string (ex. var numString =‘123’;) to number by calling Number(stringName)
function. Can vice versa with numName.toString() call.

-Backtick strings are called “template literals” and can contain substrings enclosed within ${ },
which can contain arithmetic formulas where the computed result is output in the string

-ex. `half of 100 is ${100 / 2}` //string displays as half of 100 is 50

-String length via string.length;

-return specific char - stringName[#] where # is position of char in string. 0 oriented (first char at 0,
not 1)

-string.toLowerCase() string.toUpperCase()

Auto Type Conversion
-Since JS only contains a few types, will try and auto-convert to make type fit with method (ex. “5”
* 2 outputs 10). Aka “type coercion.”

-Good for debugging. To see if value has real value, compare == null. If == null, error. Note: Null
== undefined.

Program Structure

-Expression – fragment of code that produces a value
-Statement – a complete expression. Basic statements ended with ; (though technically not needed,
but more error prone)
-Environment – The collection of variables and their values when a program is running

-Side effect – change that occurs in program flow as a result of function, statement, etc.. Ex.
function displays text box.

-Function – A named section of a program that performs a specific task when executed. Optionally,
take arguments and output return values.

-Declaration syntax: function(let nameY) { … }
-Call syntax: function(letArgX);

-Block – any number of statements grouped into a single statement with { } braces

-Declaration - states type and name
-Assignment - assigning a new value to a variable
-Initialization - assignment done during declaration

 Variables
-Aka “bindings”. A value bound to an identifier.

-Declaration: type name;
-Initialization: type name = value;
-Assignment: name = value;
-String values in quotes

-var variable type can be declared w/ same name multiple times, let variable cannot. var scope,
when in function, is function block, while let is only accessible to inner enclosing block.

-ex. var inside a for loop inside a function would be visible outside of loop. let would not.

-Can declare multiple variables at once by stating type, then separating names with commas
-ex. let one = 1, two = 2;

-JS is dynamically typed lang - var and let can store many data types (numbers, strings, boolean,
arrays, objects, etc.)

-Naming conventions: 0-9, a-z, A-Z only. No underscore or number as first char. Only $ and _
special chars allowed. capitalizeLikeThis. Constants named in all caps (ex. CONSTANTVAR).

-const - immutable variable

-Primitives (simple data type w/ no additional properties/methods) - string, number, boolean,
undefined

Console.log Function
-Outputs to console (ex. node.js console, browser console, etc.). Not displayed on site.
-ex. console.log(“Show this Text”);

Conditional Statements
if (condition) {…}
else if (condition) {…}
else {…}

-Can shorthand a boolean variable by just calling if(varName), which will return T/F
-If only one expression following if(condition), etc., do not need braces
-Can nest if-else statements

-Switch - Alternative to lengthy if-else statements. Takes in value or expression as input and runs
through cases until choice matches:

switch (expressionOrValue) {
 case value1:
 run this code;
 break;
 case valueN:
 run this code instead;

 break;
default:

 actually, just run this code;
}

Loops
while(condition) {…} //checks condition, then executes. Could execute 0 times.

do {…} while(condition); //executes, then checks condition. Always executes at least once.

for(let i=0; i++; i < 10){...} //etc. Even if omit loop arg(s), still include semicolons

break – can break out of loop by calling break; statement

Comments
//comment

/*Multi-line
comment*/

Functions

Definition
-In JS functions are values. If want to define and bind a function like one would with a var, etc,
name goes on left side of definition, and binding is denoted as a function via keyword function

-ex. const mathFunction = function(x) {...}; //note semicolon at end, since definition

-Parameters in function only given a name, not a type
-Parameter at definition = argument when value passed as param during runtime

-Return specified via return x;

Scope
-Global if outside function, local if inside function
-let and const only in scope within their containing { } block (use var if need to define variable in
loop that can read outside of loops, etc.

Functions as Values
-Can pass functions to other functions via assigned name
-If function not const can give function a new definition by redefining function

Declaration
-Functions can also be declared in a more traditional manner via, function functionName(){…}
-When a function declared, instead of defined, function out of normal top-to-bottom flow and thus
can be called before declaration, as if lang was compiled

Arrow Function
-Less verbose way of writing functions

-Syntax: (x, y) => {...};
-If only one param, () are optional
-If returning expression, no brackets: (x, y) => expression
-If want to return to variable let varName = (x,y) => {...}

-Flow: parameters sent to {...} with =>, which then returns

Call Stack
-Current place where code is executing sits on top of call stack. When program switches to another
point in the code (ex. functionA calls to functionB which is lower in the code), current point of
execution is stored at top of call stack. When execution of functionB is done, call stack pops and

returns to point where it was prior to moving to functionB.
-Call stack stored in memory. If stack grows to large, stack overflow will occur

Optional Arguments
-JS does not error if you pass an extra argument to a function, even if the function was not set to
take that argument during deceleration.

-ex. call functionName(10, 20), but function was declared as function functionName(x){…}

-Also does not error if pass too few args, and simply values missing args as undefined. If place =
valueX after arg during function declaration, that value will be default if arg not defined, instead of
undefined.

Closure
-Allows you to use a name for a variable in local scope, then use the same name again later, once
that variable name is out of scope

-ex. name let dog in for loop in function, then name another variable outside of the for loop in the
same function, after the for loop block

Recursion
-When a function calls itself
-Make sure there is an end condition specified so the program doesn't enter (((infinite recursion)))
and stack overflow
-Note that using simple for, etc. loops is often significantly faster during runtime than making
recursive calls. Upside is less wordy, more elegant code.
-Useful when traveling through branches, such as search traversals

-Remember that if returning a value from base call of recursively called function, all conditionals,
etc. in the statement must also return a value, otherwise function will return undefined, as return
chain will not exist in recursive calls of function

Data Structures: Objects & Arrays

Properties
-Declared values stored within objects (ex. string.length)

-Reference object.propertyName to access property by name

-If accessing a property that has an atypical binding name (ex. numerical binding names such as an
array index or binding name with spaces), access via object["binding name"]

-ex. objectA.Object.keys(objectA)[4] ...
//Object.keys() returns an array of property names for an object. Here, objectA is referencing the
name of its 4th property. Since the name is returned from the method Object.keys(), it needs to be
referenced via a []

Methods
-Properties that hold function values

-ex. string.toUpperCase()

-Call via: object.Functionname(optionalArgs);

Arrays
-In JS, linear arrangement data structure where you can add to either end and remove from the end
(highest index). Note, this gives it stack and queue like functionalities.

-Initialization - let arrayName = [data1, data2, dataN];
-In JS, arrays can hold mixed data types, as a let, var, etc. could be a number, string, object, etc.

-Access item via arrayName[#], where # is index of item. Assign val via arrayName[#] = val;
-Multi-dimensional access via: arrayName[#][#], etc.
-As all data structures, first index starts at 0

-length - array.length

-Add to end of array - array.push(data, optionalDataN); //returns new array length
-Remove from end of array from array – array.pop()
-Can create equivalent of stack (LIFO) with above

-Tell if array includes value. Boolean. - arrayName.includes(valueX)

Array Loops
-Instead of looping through array in traditional manner, by calling arrayName[i] via incrementing
for loop counter, can do:

for (let indexName of objectName) {…} //let could also be const, var, etc

-Note that you are actually assigning the indexes of the array a name with indexName. This is equal
to

for(let i = 0;){
let someName = arrayX[i]; //could then reference someName.someProperty;

}

Objects
-Collection of properties and methods in an contained group referenced by a specific object name
(global) or object instance name (local or global)

-Definition: let objectName = { propertiesNameX: value,
propertyNameY value
"property name z": "the value"};

-Primitives types are copied by value, reference types are copied by reference

-Note that core objects, such as Math and Object are named with uppercase

-Property assignment (outside of object) objectName.propertyName = value;

-Can remove property from object via unary operator delete objectName.propertyName; Note
this doesn't just set the value to undefined, but actually removes the property from the object.

-Can tell if property exists in object (referenced via name) via binary in operator: "propertyName"
in objectName; //note quotes around property name

-List object properties - Object.keys(objectName); //Object is a per-existing obj in JS core

-Copy all properties of objectX to objectY - Object.assign(objectX, objectY)
-if both objects have property of same name, Y value will overwrite X value

-Object example:
function addEntry(tasks, complete){

toDoList.push({tasks, complete}); //pushes object containing tasks & complete
}

addEntry({["work", "study", "clean room", "call Bob"], true},
 { ["work", "water plant", "bank"], false});

//pushes two entries, where task is an array of strings and complete is boolean

Mutability
-Even if objects contain properties with the same names, each object references a different property,
as the objects are independent of one another, as long as object does not reference another existing
object via objectA = objectB, in which case a change in one would reflect in both.

-A comparison of objectA and objectB with === in this case would return false, though, since
it compares by identity, not content

Advanced Arrays

-Add to start of array array.unshift(data, optionalDataN); //returns new array length
-Remove from start of array - array.shift()
-Can create queue (FIFO) with above

-arrayName.indexOf(valueX) - searches from start (index 0) to end of array and returns index of
value, if present. Put value in quotes if has spaces. Returns -1 if not found.
-Can do same, but start at end of array via arrayName.lastIndexOf(valueX)
-Both also take a second argument for where to start searching, moving in either ascending or
descending search order from that position

-arrayName.slice(indexStart#, optionalIndexEnd#) - copies sub-array out of array. If don’t specify
end char, slices from start until end of array.

-Concat arrays with arrayA.concat(arrayB) - Can also define an array for arrayB ([valueX,
valueY, ...]) instead of passing existing array name.

-Can also pass arguments that are not arrays, and will concat to end of array

String Methods

-Strings have indexOf and slice methods, like arrays:
- stringA.indexOf("char(s)") //could search for "search", etc.
- stringA.slice(startChar, optionalEndChar)

- stringB.trim() - Remove whitespace (spaces, newlines, tabs, etc.) from start and end with

- string.replace(‘originalSubString’, ‘newSubstring’)

- padStart(timesToPad, "padChar") - adds padChar x number of times to start of string

- stringX.Split("char(s)") - splits string into array of strings at every occurrence of char(s)

- stringX = arrayName.join(‘breakChar(s)’) - array to string where array values are separated in
string by breakChar(s)

- stringX.repeat(#ToRepeat) - repeats string # of times

Rest Parameters
-Can set a function to accept any number of args by placing three periods before last argument:

- function functionName(...lastArg) { …}
-... is a "rest parameter," and bound to an array that holds it's args

-Can also call a function with an array argument using rest parameter, where specifying rest param
spreads out the array so each array element is passed to the function as an individual arg

-ex. printElements(...myArray);

-If use rest param in array assignment, will spread out rest array inside array added to
-ex. let firstArray = {"This", "is", "array"]

let secondArray = {"Dog", ...firstArray, "Cat"
//secondArray contains "Dog", "This", "is", "array", "Cat

The Math Object
-Math.max(args) - returns highest num of args
-Math.min(args)
-Math.sqrt(arg) - square root

-Trig Math functions - .cos .sin (sine) .tan (tangent) .pi .acos .asin .atan

-Math.random() - returns pseudo-random num between 0 (inclusive) and 1 (exclusive)

-Math.round(wholeNumOrExpression) - rounds decimal to nearest whole num
-Math.floor(wholeNumOrExpression) - rounds decimal down to nearest whole num
-Math.ceiling(wholeNumOrExpression) - rounds decimal up to nearest whole num

-Math.abs(num) - returns absolute val of num (negates negatives to become positives)

Destructuring
-Allows you to unpack elements or properties from arrays, objects, etc. into distinct variables by
using [] or {} as lefthand assignment operator

-With objects, reference by property names:
 const theObject = {a: 1, b: 2, c: 3};
 const {a} = theObject //will print 1
 const {a, c} = theObject //a will print 1, c will print 3

-Can give different names then name of object property via
const {newName : a} = theObject //newName will print 1

-With arrays, works via indexes
 const theArray = [1, 2, 3, 4];

 const [a, b] = theArray; //a prints 1, b prints 2

-To skip index in array, use extra commas, where each additional extra comma is an index
-ex. const[, a, , b] = theArray; //a prints 2, b prints 4

-If use rest parameter before variable name destructuring too, remainder of array will go into rest
-ex. const [a, b, ...rest] //a prints 1, b prints 2, rest is an array with 3, 4

-Note, can also destructure on definition
ex. const [a, b, ...rest] = getBigArray();

JSON
-Objects and arrays stored in memory during runtime, where data mapped to mem addresses
-JSON serializes memory that holds data into a flat description.

-In JSON, property names must be double quoted and only simple expressions (no function calls,
bindings, etc.) are allowed. Also no comments

-Ex {
"man": false,
"names": ["kelly", "diana", "maria", "karen"]

}
-To convert data to and from JSON, use JSON.stringify and JSON.parse, where when converting to,
you pass it data such as above example.

-ex. JSON.parse(cities).populations;

Objects & Flow
-In the following code, a linked list is created. Note that the list element creates a link property that
references itself. If the first iteration starts at 3, the list property holds itself, which at the time off
assignment, is null. On the next iteration, initialization has occurred, and list now is 3. When
assignment occurs, it thus contains list 3, while the value is set to 2. Another iteration passes and it
sets the list to the current value of 2, while value changes to 1, etc.

function arrayToList(theArray){
 let list;

 for(let i = array.length-1; i >= 0; i--){
 list= {value: theArray[i],

 link: list
 };

 }
 return list;

}

High-Order Functions

Abstraction in Functions
-Taking a complex problem, likely with long wordy code, and breaking it down into smaller parts,
which can then be used to solved them same problem in a less wordy, "easier to grasp when reading
the code," way

-Concepts such as breaking down large functions into smaller functions, sending functions objects
to actions on, defining a function in the call instead of creating a bind for it prior then sending, etc.

High-Order Functions
-Functions that operate on other functions, either by taking them as args or returning them

-Pure function - does not modify the arguments that it is given. No side effects. Less likely to cause
hard to decipher bugs due to unexpected side effects.
-Can create more pure functions by having functions that are known not to pure operate as separate
functions, then called on by pure functions.

Transforming with Map
-Pass a function to act on array elements and return new mapped elements:

function map(array, transform){ //transform is a function
let mapped = [];
for (let element of array){

mapped.push(transform(element)); //runs transform() on elm, then pushes to array
}
return mapped;

}

Example with Comparison Operators
function inBetween(year){

for(let person of people) {
if(person.checkYear(([born, died]) =>

{ return year >= born && year < died;}))
return person;

}
}

//Runs checkYear() function that person has as a method and passes it an array with born and died
years to function that returns person object if that person's year falls between born and died

Summarizing with Reduce
-Returns a single value generated from performing the passed computation function on each item in
array (ex. a some function for numbers) starting with firstElement

-arrayName.reduce((accumulator, currentValue) => {return ...}, intialValue);

-Built in function for arrays in JS. Takes two arguments:
1) function: (accumulator, currentValue) => {return ...}
2) initialValue.

-currentValue is used by reduce to store the current index's value on the current iteration
-initialValue is the first value for accumulator to use on the first iteration

-reduce runs through the array and for each item in it, returns the function output defined in ...,
which usually involves performing an action on the accumulator and currentValue

-Sum example:

let numbers = [0, 4, 2, -8];

let sum = numbers.reduce((accumulator, currentValue) =>
 accumulator + currentValue) , 0);

//accumaltor initial value = 0. On each run adds index value, ie currentValue to accumulator

More Built in Array High Order Functions
-Numerous like slice(), foreach(), pop(), includes(), indexOf() etc. already discussed

-arrayName.filter(testFunction) - Returns an array of values from arrayName that pass the test
specified in testFunction

-arrayName.map(transformFunction) - Returns an array of values after applying the transform
function

-arrayName.some(testFunction) - Returns true if any elements in array pass test specified by passed
test function

-arrayName.every(testFunction) - Returns true if every element in array passes test specified by
passed test function

-arrayName.reverse() - Reverses the order of elements (front index becomes back index, etc.) of
array

Objects and OOP

Encapsulation
-Breaking programs into smaller pieces where each piece manages its own state

-By localizing functions to objects, the inner workings of the objects do not need to be known and
can be accessed via abstract interfaces, which remain consistent, even if the inner workings change.
Interfaces = public, inner workings = private.

-Since JS does not include native public and private keywords (sigh...), so common to ghetto-rig it
by name private functions starting with _

Methods
-Object properties that hold function values
-Name an object property with dot

-ex. let rabbit ={} //object definition
rabbit.speak = function(arg){...} //method deceleration

-Can refer to method from within itself via methodName.propertyName
-ex. function foo() {

foo.count = 4
}

this
-A runtime binding made when a function is invoked, where either

a) if made within a method call, this references the object that is executing the current object.

b) if made within a global function call, this references the global object (ex. browser window)

-Ex. const video = {
title: "Nightslayer III",
play(){ console.log(this.title}; }

}
video.play();
//output is "Nightslayer III"

-this.type - when called from inside object, returns object name

Protoypes
-All JS objects have a property that points to a prototype object, which is the object that type of
object was based off of. Any method or property the prototype has, the objects cloned from it will
also have.
-If the prototype is changed these methods/properties will also changed for the objects that were
created from it.
-Objects created as clones from prototype can override prototype methods/properties w/o changes
reflecting in prototype

-If request is made on object for a property it doesn't have, it will check to see if it's prototype object
has it and return it instead

-Some core JS prototypes: Object.prototype, Function.prototype, Array.prototype
-Object.getPrototypeOf(objectName) - returns prototype of object

Prototype Constructors
-Class - blueprint containing all methods and properties all objects (instances) of that class will
have. JavaScript uses prototypes instead

-Create object of specific prototype: Object.create(prototypeName)
-ex. let dog = Object.create(protoDog);

//dog is created as an object cloned from protoDog and thus shares methods/properties of

-Constructor - function that creates an instance of a prototype with the proper instance-specific
properties

-ex. function makeRabbit(type){
let rabbit = Object.create(ProtoRabbit);
rabbit.type = type;
return rabbit;

}
//object rabbit is created as a clone of protoRabbit and given additional passed type value

-Can also construct a new object by calling the new operator which creates a new instance of the
prototype specified to the right of it. Usually call new on constructor methods:

-ex. function Car(type, model) { //constructors are capitalized
this.type = type;
this.model = model

}

let usedCar = new Car("sedan", "civic";

console.log(usedCar.type);

-All user created objects inherit a prototype property, which is the prototype they were derived from
and can be viewed via Object.getPrototype(objectName). When create instance with new, this value
is set to object it is cloned from

-ex. (continued)
Object.getPrototype(Car); //returns [Function]
Object.getPrototype(usedCar); //returns Car {}

Class Notation
-Class keyword defines a class type, so don't need to use const. Create constructor() method inside
class, to create instances of class with via new, etc.

-ex. class Car{ //also capitalize prototype names
constructor(...args) { //leave as "constructor" as methods as new calls this name

this.bindA = argA;
}
//methods here

}

let newCar = new Car("shiny"); //calls constructor() method and creates Car clone

-Note that classes themselves can only hold methods, not properties. Properties must thus be
specified by methods, such as in the this.type constructor example above.

-Could also create new class like: let object = new class {…}

-Can create object with no prototype by calling Object.creat(null) when creating object. Note, will
not include Object prototype methods, like toString()

Overriding Derived Properties
-When override property in instance that also exists in prototype, prototype property simply ignored
and instance property referenced for this instances instead. Only overridden in instance and
prototype and other instances created from prototype unaffected.

-Allows you to make a more specialized version of a class derived from a more general prototype

Maps
-Data structure that associates keys with values

-Can check if property name exist in object via in operator, which is called on object name
-ex. (continued)

return "type" in Car; //returns true

-Maps allows similar functionality, via Map class, where object is created via let myMap = new
Map(); and then interact with via:

-myMap.set("myKey", myValue)
-myMap.get("keyName) - returns associated value
-myMap.has("value") - returns boolean

-Excellent for quickly updating and searching a large set of data

Polymorphism
-The ability to call the same method on different objects and have each of them respond in their
own way. One interface may be implemented by multiple objects. In JS, formed by varying
functionality of constructors.

Symbols
-JS includes a symbol() method that takes a value and associates a unique identifier to that value.
This allows you to set symbols as property keys, where their names are actually unique compared to
strings. This allows you to avoid name-clashes for properties or provide truly unique object keys.

-Create via let name = Symbol("value");
-Note that value is not what Symbol uses to generate the unique symbol, but simply an optional
descriptive String parameter that is show when displaying the Symbol

-Example (cont.):
const meltCar = Symbol("meltCar");
Car.[meltCar] = function() {...}; //

-Example
let stringA = "the;
let stringB = "the" // stringA == stringB returns true
let sy8 mbolA = "the";
let symbolB = "the"; //symbolA == symbolB returns false

The Iterator Interface
-In JS, an iterator is a pointer for for traversing the elements in a data structure
-Iterable objects are ones that implement the iterable interface. Any object that contains a
[Symbol.iterator] method is an iterable object.
-iterator is a part of Symbol to give it a truly unique identifier, which you can append to functions to
make them implement iterator

-String, Array, TypeArray, Map, and Set all implement Symbol.iterator. Object does not.

-By giving a class a function that references [Symbol.iterator] and returns an iterator object (which
is responsible for the iteration logic) you make the class iterable. Then, when a function that uses
iteration is called (ex. for...of), that function calls on the class Symbol.iterator method for iteration.

-This interface has a next() method to return the next result (which is an object with a value property
for the next value), and a boolean done property for if there are more results or not.

-To make an objet iterable, you would define the object, the link it with the iterator interface:
-ex. let iterable = "IterateMe";

let iterator = iterable[Symbol.iterator]();
console.log(okIterator.next()); //value: "I", done: false
console.log(okIterator.next()); //value: "t", done: false
…
 console.log(okIterator.next()); //value: undefined, done: true

-Can also make iterable via shorter syntax:

let okIterator = "OK"[Symbol.iterator]();

-To create a custom iterator class or object, give it a method [Symbol.iterator]() {...}, then override
the functionality of the iterator interface as desired by giving it a return { next: () => {...}}; method
(an iterator) that returns {value, done}. Done could be implemented by using an element counter,
etc..

-Eloquent JavaScript did a bad job covering this, imo. Use this resource for a much better
description of iterators in JS

Getters, Setters, and Statics
-Getter - return an object property from an object (or a modified version of a property, such as a
property with an expression calculated on it). Define by precursing method name with get. Allows
for proper encapsulation and abstraction.

-ex. get fahrenheight() {return this...};

-Setter - sets the value of an objects property (or ""). Define by precursing method name with set
-ex. set fahrenheight() {return this...};

-Once defined, can then set and get properties from global by calling objectName.get = ...;
-ex. chicago.fahrenheight = 86;

console.log(chicago.fahrenheight); //prints 86

-If set keyword static before a method, method is not called on an instance of the class, but the class
itself. These methods can thus call the new method and the constructor name for the object, and an
object of this object type will be returned This allows you to created different types of objects using
the same constructor, using different static methods.

-ex. class Temperature {
constructor(celcius) {

this.celcius = celcius;
}

static fromFahrenheight(temp){ //Tempreature.fromFarenheight() returns Temp obj
return new Temperature((temp - 32) / 1.8));

}

Inheritance
-A new class(subclass) that inherits from the old class (superclass) inherits the properties and
behavior of the superclass without needing to redefine them

-Define subclass using extends keyword:
class NewClass extends OldClass { //constructor, set, etc }

-Call constructor of superclass from within subclass by calling super method, which takes same
parameters as the superclass constructor. To call a method of the superclass from the subclass, call
via super.methodName()

-Can override a superclass method for the subclass by giving the subclass method the same name,
but giving it different behavior, etc.. Functionality is then modified for subclass, but left unmodified
in the superclass.

http://jsrocks.org/2015/09/javascript-iterables-and-iterators

-Inheritance is controversial, because unlike encapsulation or inheritance, which creates a clear
divide between classes, inheritance ties classes together. Thus, do not use it as your first solution, as
it can create overly complex webs in object structure and functioning.

The instanceof Operator
-Binary operator that returns true if object is derived from a specified class
-Syntax: className instance of Class

Bugs & Errors

-Debugging - the process of finding mistakes in code syntax or logic

Strict Mode
If put "use strict" at top of file or as first line in function:

I) JS will error if a type is not defined for a variable, instead of the usual behavior, which is to
assign the variable as a global variable. Only works if binding does not already exist globally.

II) this gets set to undefined in functions that are not methods.

III) it will not allow functions to have parameters of the same name

Types
-Since JS is so weakly typed, useful to put comment before function that specifies what types args
should be and what type returned
-Can also use TypeScript which is a superset of JS produced by MS that adds stronger typing

Testing
-Can write your own tests or use per-existing suites of tests that output info on when a test fails
("test runners")

Debugging
-Stick some console.log() calls at strategic spots to help identify where the error is occurring or the
error chain starts
-Browsers contain debuggers that set a breakpoint at a specific line in your code, where the
execution the pauses and you can then expect binding values at that current state
-If include debugger keyword in code, browser will breakpoint at that spot

Error Propagation
-Make sure to account for user input error, either handling errors and return a special value (ex.
null) or displaying an error to user. Display often preferred.

Exceptions
-Exception handling - when a program errors and cannot proceed, so it jumps to a place to handle
the error, then returns to normal flow

-Exception is thrown by erroring method and caught by error handler. Error handler will the
"unwind the stack" of the error, producing the flow of function calls leading to the error origin

-Exceptions in JS very similar to Java, via try, throw, catch, and finally :

1) put throw statement in function you want to throw error if error occurs:

 throw new Error("Error description: " + someValue) //ex. put in user prompt function
2) Call function that may error from within try catch statement, where the function call occurs
within try and is followed by a catch(error) that catches the error if one occurs. If catch triggers,
error is displayed then program continues from below catch statement
3) Optional finally can go below catch. Code inside finally executes regardless if error is caught or
not

-ex.
 function doSomething(x){
 let value = prompt(value);
 if return...;
 if return...;
 throw new Error("Error message: " + value);

 try {
 doSomething(reeeee);
 }
 catch (error) {
 console.log("Error: " + error);
 }
 finally{
 doThisNoMatterWhat(){...};
 }
-Note that can throw anything (ex. instead of throwing Error could throw FishError) and the error
throw will be of that type

-When catch is triggered, stack-trace also occurs and is stored in the stack property, which can then
be reviewed

-The fewer side effects program functions have, the less likely an exception is to cause problems
with the following flow

-To create proper flow, write try catch statements in a wrapper function that calls the function you
want to pass through the try/catch and do the error handling in there

Selective Catching
-If no catch statement, program will either execute and error at end or halt, depending on engine
running JS. Good for debugging, but terrible for real world use during runtime.

-Cannot selectively catch exceptions in JS. Either catch them all, or don't catch any, so may miss
exceptions as a result. Can mimic selective catch by checking exception for value to see if intended
error, and handling if so, and otherwise letting pass through unhandled.

Assertions
-Functions set to trigger if an error occurs and throw an error, etc.

Regular Expressions - come back to more later

-Patterns used to match character combos in strings. In JS, the expression is a RegExp obj

Creating a RegEx
-Can build with RegExp() constructor or define within /.../

 let regA = new RegExP("abc"); //standard string backslash rules
 let regB = /abc/; //put backslash \ before \ also before + and ?

Testing for Matches
- someRegEx.test("input"); //tests to see if someRegEx exists inside input. returns boolean.

Sets of Chars
-If define pattern within [], defining a set. Ex. /[012345]/. Can be quick range set with hyphen: /[0-
9]/. If run .test("input) on set, test() returns true if input contains any of chars defined in set.

Character Groups
-Match any digit in their group. Ex. \d matches all digits.
 \d - digit \w alphanumeric \s whitespace (newline, tab, space, etc.)
 \D - not a digit \W non-alphanumeric \S non-whitespace

-Can include as parts of sets. Ex./\[\d.A]/ //set for any digit, ., or A

-NOT: expressed with ^ inside [] ex. /[^0123]/) //not these num chars

Repeating Parts
-Occurs any number of times > 0: char+ ex. \d+ABC //any-num-digitsABC
-Occurs any number of times including 0: char*
-Occurs zero or one time. Is "optional": char? ex. /neighbou?r/

-Occurs x num of times: char{x}
-Occurs x to y num of times: char{x, y}

-See cheat sheet for more RegExp selection characters

Grouping Sub-expressions
-Can run tests above on groups of chars by enclosing groups within ()
 -ex. /boo(ho+)+/ //boohooohohooohohooohooo is true

Matching and Groups
-Execute function someRegEx.exec("input") - returns object containing array of strings, where each
index is substring that matched pattern
-Can call properties on object to see what index of input substring starts. .index for current index.

-Can also do the same with "someString".match(/regEx/), Also can take a string parameter.

The Date Class
-Date object - new Date();
-In JS, months start at 0, but days start at 1
-Arguments are numeric (yyyy, mm, dd, hr, min, sec, ms). Last four args optional. UTC.

-Can take single arg as a millisecond count of the date new Date(13874929840000);
-Can get current ms count by calling functions By creating a new Date object and calling getTime
on it or Date.now function. Also has functions getFullYear, getMonth, getDate, getHours,
getMinutes, getSeconds

Modules

-Used to avoid big ball of mud program; hard to understand and maintain.
-Module - piece of program that specifies which other pieces it relies and and provides and interface
for other modules
-Dependencies - other modules required for moduleABC to function, similar in Linux PM

Packages
-Pretty much the same as Linux
-A chunk of code that can be copied and installed (distributed) which can contain one or more
modules and lists its dependencies
-Usually comes with doc on how to purpose and use
-When package update by creators, users can also update package

-Packages installed, updated, etc., via NPM, the Node Package Manager, bundled with Node.js
-Many, many quality frameworks, libraries, packages, etc. available through NPM (ex. REACT)

Improvised Modules
-Since modules were an ES6 addition, makeshift module construction was often done by creating
"private" const data structures, then returning data from them via a makeshift API

Evaluating Data As Code
-Function constructor - takes list of arg names and function, and runs function on passed args when
called. Syntax: let someFunction = Function("argA, argB, ...", "function statement;");
-Code thus has isolated scope, wrapped inside function value

-ex. let plusOne = Function("n", "return n+1;");
 console.log(plusOne(4));

CommonJS
-Used by Node and most Node packages
-Has a require() function, which loads a module

-Export modules with module.exports = someFunctionObjectEtc; or module.exports = {functionA,
letB, ...}

-Once exported, assign to variable via const someVar = require('./moduleName), then can call
elements from module

-ex. function add(a, b) { return a+b;}
 module.exports = add;
 //some other file
 cont add = require('./add');
 console.log(add(4, 8));

-Note that interface for module can be a function, such as above example

ECMAScript Modules
-Uses import keyword to import parts of module.
-Syntax: import something from "someModule.js";
 -ex. import React from "react";
-Import multiple parts of module via import {something, somethingElse} from ...;

-Can then call function names, etc., by name, as if were globally bound function, etc.

-Export in similar manner via export keyword
-export may appear prior to a function definition, class definition, or binding name to one
 -ex. export function formatDate(date, format {...};

 -ex. export {thisFunction, thatFunction, someObject};
 //would then import via import {thisFunction, someObject} from "jsModuleFileName";

-Note that export sends out binding to function, etc., not a copy of, meaning if definition changes,
modules which use module via import will see changes

-default - if export something with default for binding (ex. export default ["Winter", "Summer"];),
used on import if import does not contain braces around around what it is importing
-Braces generally used to import specific parts of module (ex. a function), while default imports
used to import bulk or standard parts of module

-Can rename bindings of imports via import {someModule as newName} from "theModule";, then
access methods, etc. via newName.someMethod()

-Imports occur before script starts running. Put at top of code for readability.

Building & Bundling
-Bundlers - Tools that put all JS into one file, for faster transfer when page loaded
-Minifier - tools that make the JS file smaller by removing whitespace, shortening bindings, etc.

Module Design
-Follow existing conventions
-Functional programming often faster and more intuitive than stateful OOP programming
-Use proper data structures

Asynchronous Programming - come back to later

-Thread - A running program whose execution may be interleaved with other running programs.
Can run synchronous processes across multiple threads for increased speed.

-In asynch, instead of threads, a split in processing occurs, where the program that the split
originated keeps running, and the split notifies it when it has completed. Browsers and node both
run asynch.

Callbacks
-Callback function - a function passed to another function as an argument
-If function is slow, can pass in callback function, then call function when actions of function
passing to complete.
-Ex. pass an anon function to functionX that calls a done() method
-Using callbacks this way a bit deprecated after ES6, but good to know for maintaining older code

Promises
-An asynch action that may complete at some point and produce a value. Has ability to notify
members when its value is available. Is in either pending, fulfilled, or rejected state.

-Can create promise by calling Promise.resolve(someObject), which wraps someObject in a
Promise.
-To get result of promise, call someObject.then(value => someFunction{...}), where value is passed
as an arg holding the result value.
-then also returns a promise which revolves to the value the handling function returns

-Can add multi then callbacks to a single promise and will all be called

JS & The Browser

Networks & The Internet
-Network protocol - a style of communication over the network. http, ftp, etc.

-HTTP - hypertext transfer protocol. Receives and sends named packets of data.

-TCP - Transmission Control Protocol. Most communication on internet built on top of it. High
level overview: server is listening for clients to start talking to it, with different types of listening on
different ports (often with defaults given, ex. SMTP port 25). Listener gets connection request and
remote connects via port. Client-sever. HTTP data passes through connection established by TCP.

The Web
-The set of protocols and formats that allow browser access to the net
-Most basic connection = a machine connected to the net with listener on port 80 so other
computers can can ask it for document

-http:// - protocol
-thewebsite.com - sever
-/week09-practice.html - path to the document

-Can connect to sever ip via domain name assigned to it via DNS

HTML
Can enclose JS in <script>...</script> tag in HTML doc or import via <script src="./location"></
script>
-If give <script> attribute type="module", can use ES modules

Sandboxing
-JS not allowed access to files hosted on browser computer and has page only mod rights

The DOM

-JS interacts with DOM as live data structure, meaning dynamic updates
-Dorm forms a tree structure based on parent-child relationships
-Given access to DOM by global document object,which has properties referring to<html>,
<body>, <head>, <footer>, <div>, etc.

- document.documentElement - refers to <html> tag
` -ex. let html = document.documentElement; //for manipulation of <html> and children

-JS nodes on tree represent html elements. Nodes have properties, which access CSS & HTML
properties

-nodeType property - property of JS DOM nodes. ls code number. Elements = 1, text nodes = 3,
comments = 8. Will also equal to proper Node.ELEMENT_NODE, Node.TEXT_NODE, and
Node.COMMENT_NODE properties.

-Plain JS interaction with DOM is often clunky and messy. Libraries often used for this reason (ex.
REACT).

-someTextNode.nodeValue - holds text for text node

Important Types
-Document - the root document object

-Element - elements returned by dom API are of type Element. Implement DOM Element and Node
interfaces

-NodeList - an array-like object of elements returned by DOM methods that return multiple
elements.(ex. getElementsByTagName()). Can access elements in via someNodeList[i] or
someNodeList.item(i). Call Array.from on if want it to be full Array

-NamedNodeMap - a map, but elements accessed by name (or index, to allow for enumeration) via
NamedNodeMap.item().

Moving Through the Tree
Below are properties of DOM nodes

-ex. document.documentElement.firstchild

- parentNode - parent node (if any)

-childNodes -points to array-like object holding its children elements. Has a .length property. Need
full for loop with iterator to traverse.

-children - points to array-like object holding children, but only type 1 (element) children

-firstChild, lastChild, previousSibling, nextSibling

-nodeType - ex. ELEMENT_NODE

-Moving through DOM often smooth when done with recursion since DOM == tree

-Moving this way can be problematic if DOM structure changes later

Finding Elements
-Node.TEXT_NODE created even for white space between nodes in HTML, so traversing by nth
child can be impractical for many situations

-document.getElementsByTagName("tagName") - Gets all descendants of tagName for node. Can
call on specific children in via [x]

- document.getElementByID("idName") - single node returned

- document.getElementsByClassName("className") - returns all elements of className

Changing the Document
-Once have element, can reference html attributes by calling .attributeName on item

-ex. document.getElementById("checkOutAnchor").href = "/newCheckOut.html"

-Note that when you reference an element through the DOM, you're doing so via JavaScript APIs.
So for example, if you create a let that references a specific <table>, that let inherits from multiple
JavaScript APIs, such as HTMLTableElement and Element to actually interact with, manipulate,
delete, add to, etc. that element.

-someElement.remove() - Can remove element from DOM by calling on

-document.createElement("tagName") - Can create new element of <someTagType>

-node.appendChild(node) - appends as last child

-node.insertBefore(newnode, existingnode) - inserts newNode before existingNode
-could call by node.insertBefore(newNode, node[0]), etc.

-node.replaceChild(newNode, nodeToReplace) - Node to replace must be child of node method
called on

-Note that a node can exist in only one place in the document, so appending existing node, inserting
existing node, etc. will cause it to move to that position, not copy

Creating Nodes
-document.createTextNode(newNode) - Can pass a string or an existing node holding a string value:

-ex. document.createTextNode(getElementByTagName(theImage).alt) //is image alt

-document.CreateElement("tagName")

-If create child , <i>, etc. and append textNode to it as child, textNode will be

Attributes
-JS DOM element objects often has same property names as HTML elements, and thus they can be
accessed with . and changed, tested, with =, ==, etc.

-Custom named attributes on HTML elements must be accessed via
node.getAttribute("attributeName"). Suggested to prefix custom HTML attribute with data- or some
other prefix, so don't accidentally conflict with existing core attr name.

-node.setAttribute("attributeName", "value")
-Can also just set with node.attributeName = "value" for most core attributes

Layout
-node.offsetWidth - the width the element takes up in pixels
-node.offsetHeight

-node.clientWidth - the space inside the element, ignoring border width
-node.clientHeight

-node.getBoundingClientRect() - returns obj with top, bottom, left, right properties indicating pixel
positions of element relevant to screen position

-Note that every time DOM changes layout or access layout via above methods, must recompute
DOM. If does a lot, slow program.

Styling
-Reminder: Can pass in CSS style to HTML element by adding style="property: value" attribute to
an HTML element. ex.

-Can manipulate all CSS styling rules and properties by calling node.style.propertyName on. Can
then change, check, etc. with =, ==, etc..

-Note: CSS property names with hyphens in name (ex. background-color) usually have hyphen
removed and use cap (backgroundColor) instead

Query Selectors
-document.querySelectorAll("selectorString") - returns a NodeList containing all selectors of exact
same selector.

-Can pass any selector used in CSS (ex. "p", ".animal", "p .animal", "p > .animal", "#cat", etc). Call
array.from on NodeList if want to interact like array (ex. call for...of on).

-Note that NodeList itself does not hold live elements, but can get values from, modify nodes
separately

Positioning and Animating
-By giving an element a position: relative, can then animate by running through a function that
slowly changes the position, until some end point reached, etc. Note, if try and update DOM via
loop, will likely freeze page due to too many updates and slowdown.

Handling Events

Event Handling
-The browser has a variety of "events" that occur when you interact with browser nodes in some
way. Ex. click on button fires "click" event and creates an Event object. Push of key triggers
keydown event and creates an Event object. Event listeners added to nodes, and catch specified
events that may fire. Event handlers are functions registered to respond to a browser event, such as a
button click.

-Event listener - object that responds when a specified Event (ex. MouseEvent, DragEvent) occurs.
Calls parameter specified function, which "handles" event.

- someNode.addEventListener("eventObjectType", handlingFunction)
- someNode.removeEventListener("eventObjectType", handlingFunction) - removes existing

Event Objects
-When handling function is registered to event, if handling function is set to take in an event
parameter, it can gets passed an Event object

-ex. function someActions(event) {

event.Variousproperties //properties, such as type of event
}

-ex. event.button //property value: 0 if left button click, 1 if middle, 2 if right

- event.target - property on Event object that refers to node it originated from.
-ex. someEvent.tartget.nodeName == "BUTTON" //if event occurred on button, true

-If want to create event that applies to many objects, create let that holds reference to a
document.querySelector("selector") and add event listener to. Will apply to any node that matches
selector.
-Ex. let link = document.querySelector("a").addEventListener(......);

Propagation
-If event happens on parent node, event will also register with parents on that node that are also set
to handle that event. Most specific handler acts first, least specific last. If button inside paragraph
inside window, and all respond to "click," button will handle first, then paragraph, then window.

-"Propagation" from child to parent until at root

-Can stop propagation by calling .stopPropagation() on event (ex. inside event handler, at end of)
-Can add multiple eventListeners of the same type to the same Event type.

-ex. Add listener to print a message when mouse wheel scrolled.
Add a second listener with function that calls stopPropagation()

Key Events
-keydown event when button pressed. keyup when released. Specific key value held in event.key.
Check value by performing event.key == "w", etc. Can check values of modified keys by modified
value (ex. shift + h becomes "H") Regexp useful for specifying alphanumeric ranges.

-event properties, boolean: .shiftKey, ctrlKey, altKey, metaKey - true if one of these keys was held as
part of event. Ex. //shiftKey == true for "H" and "E"

Mouse Clicks
-mousedown and mouseup events for click. Occur on DOM nodes directly under pointer.

n-click event fires for node that contained by quick and release. Ex. click on image, move off image
to paragraph. click fires on node that contains img and paragraph.

-dblclick for double click event. Note: click event for first click fires first.

-clientX and clientY - properties. coordinates of event in pixels, relative to top left corner of window
-pageX and pageY - properties. coordinates of event in pixels, relative to top left of whole document

-Can set location of object in page by setting someNode.style.left and someNode.style.top to desired
coordinates

Mouse Motion
-mousemove event fired when mouse moved

-Often use this event for mouse dragging: create let for last mouse position. Add mousedown event
to element you want to move. Check for 0 button type (right click). Add event inside mousedown

listener

-event.buttons - property. 0 = no buttons down, 1 = L button down, 2 = R down, 4 = middle down.
Not to be confused with button (singular) property.

Touch Events
-A click on a touchscreen will generate mousedown, mouseup, and click events. No mousemove.

-touchstart, touchend, and touchmove - equivalent to mousedown, mouseup, and mousemove
-Since can touch in multi place on touchscreen, each event holds an event.touches property, which
holds and array of holding, clientX, pageY, properties, one object per point touched

Scroll Events
-scroll - event fired when mouse scrolled over element
-Useful with document.body.scrollHeight property

-innerHeight - global JS binding. Can be called just with that name (no document. needed). Gives
height of window.

Focus Events
-focus - event. Fired when focus given to element.
-blur - event. Fired when focus removed from element.
-Events do not propagate

Load Event
-load - fires when page finishes loading. Fires on window and document.body
-Do not propagate
-Useful for waiting to run x until page fully loads
-beforeunload - event. Fires on same as load. Just before page is navigated away from (ex. link
click, tab closed). Useful for stopping page from closing before user saves data, etc.. If return non-
null value from event handler, browser will show pop-up with returned value asking user if if they
really want to navigate.

Event Loop
-When triggered, browser events are scheduled, then run after other scripts finish running. Because
of this if running a loop in a handler, page will become slow and laggy if other handlers have to
wait for loop before running.

-Web workers handle above stalling issue. Run alongside main script in own environment, no scope
overlap. Runs functions and communicates output to main script.

-Create worker instance with new Worker("filename.js"), then access methods via
instanceName.method()

Timers
-setTimeout(function, ms-before-next run) - global method
-If create set timeout function as a reference to a let, etc., then call clearTimeout(letName), timer
will will be removed

Debouncing
-Setting a timer for an event handler to only run x processing every y milliseconds, to handle rapid

clicking, etc.

HTTP & Forms
-Review "JS & The Browser" section of notes for basic HTTP/TCP notes

The Protocol
-Review: browser looks up ip associated with url, opens TCP connection on port 80. Sends request.
Server responds. Browser shows updates.

-GET - A request made by the browser. Syntax: COMMAND /resourceRequesting HTTP/version
-ex. Get /page.html HTTP/1.1

-Other common request methods: DELETE, PUT (create or replace), POST

-Server responds in for HTTP/version statusCode string
 -ex HTTP/1.1 200 OK
-Status code first digits: 2 = request succeeded, 4 = request error, 5 = server error

-Request first line (ex. GET) can be followed by any number of headers in form name: value to
specify extra info

-ex. Content-Length: 65585 //size of html doc in bytes
Last-Modified: Thu, 04 Jan 2018 14:05:30 GMT

-A couple headers, like Host are required

-Put and Post requests can be followed by a blank line, then a body which contains data being sent

Browsers & HTTP
-See "Sending Form Data" section in HTML notes

-Review of HTML notes: <form> element includes method="" and action="" attributes. method
holds type of method (ex. method="GET"). action holds where form data is sent to (ex.
action="example/message.html"). GET appends requests to end of URL (ex. .../message.html?
name=Jean&message=Yes). GET to get. POST to send. Cannot simply send to text file on server
though and need PHP, JS, etc. to process this. HTTP only handles requests/responses, what is being
sent/requested and where to send to.

-JS will decode messages with special HTTP chars via decodeURIComponent global method
-ex. console.log(decodeURLComponent("Yes%3F")) //logs Yes?

Fetch
-Successor of AJAX

-JS global interface for making HTTP requests. Uses promises.
-Calling fetch returns a promise, that resolves to a response obj that holds info on server's response,
which can be retrieved via then method, which takes a function as an arg to process response

-ex. fetch("example/data.txt)".then(response => console.log(response.status));

-Syntax: fetch("urlRequesting") - If no protocol name (ex, http:) in fetch, treats url as relative
(pointing to folder page is hosted on)

-response.headers.get("key-name") - returns map like object where keys are headers

-fetch has a .text() method, which is called on the response object and returns a promise that is
resolved to content of response via text. Access via .then(handlingFunction) method called on
.text().

-ex. fetch("example/data.txt").then(response => response.text()).then(text =>
 console.log(text));

-fetch also has a .json() method, that acts the same as .text(), but whose promise resolves to json
content (or is rejected if not json). If want to convert json to string, call JSON.stringify(someJson)
on
-Can use json() to fetch rest API data

-Can specify methods via fetch via fetch("urlHere", {method: "DELETEetc"})
-Can set headers via fetch("urlHere", {headers: {Content-Length: "65585"} }); Some headers (ex.
Host) set by browser by default.

HTTP Sandboxing
-By default, browser prevents scripts from making HTTP requests to other domains (ex. could not
request data from google.com from local host) via cors, which wraps HTTP requests
-Can bypass this protection by including header: "Access-Control-Allow-Origin": '*'
-Note that site requesting from must also allow cors. It if doesn't, request will fail. If this occurs,
route through cors proxy by setting url as
https://cors-anywhere.herokuapp.com/https://www.myUrlHere.com/

Appreciating HTTP
-aka, models for communicating between a client-side JavaScript program and the program on the
server

-remote procedure calls - function is running server-side and browser makes request to server
including function name & args. Response contains returned value.

-can also do by passing info through data, such as a json file, where information is transferred to
and from server via GET, PUT, etc in json, etc., then referenced by browser/server-side functions

Security & HTTPS
-Make sure to prefer SSL and reference https when available

Form Fields
-See HTML and CSS notes for more details on forms

-Forms must be submitted as a whole, but can assess individual form values with JS to modify
application, DOM, etc.

-When <select> menu value changes, change event fired

Focus
-Can set form to focus on element by calling .focus() on JS DOM element
-Remove focus by calling .blur() on element

-ex. document.getElementById("providence").focus();

-Can set tabindex=# attribute in html to change order focus occurs when pressing tab. Ex. set
tabindex=0 on element at top of form, then tabindex=1, on third element down, to skip second

element when tabbing. Setting tabindex=-1 will cause element to be skipped.

Disabled Fields
-Can set field as disabled by calling .setAttribute("disabled", "true") on JS DOM element

Form as a Whole
-Fields contained within a <form> can be referenced via .elements property on form, which
contains a map-like structure that can be accessed via name or index. Items in elements contain key/
value pairs for html form fields

-Ex. console.log(someForm.elements[0].type); //prints type of first form field

 console.log(someForm.elements.thePassword.type)
//will print type of form field for field that has attribute name="thePassword"

-Review: <button type="submit"> will submit form when clicked or [Enter] pressed
-By default, when submit form, browser navigates to page indicated in form's html
action="urlHere" attribute, using GET or POST request. Before navigation occurs, submit event
fired from form. If call .preventDefault() on submit event, this will prevent navigation.

-Can use submit event to run form input validation or call fetch inside handler to submit to server
without page reload

-Can create FormData objects by via FormData API by calling new FormData(someForm).
FormData object holds

-Reminder that can also get current value of a form field by referencing the .value property of the
field JS dom element

Text Fields
-<textarea> and <input> type password and text JS nodes have selectionStart and selectionEnd
properties. If nothing selected, both are character cursor is at. If selected text, are numbers for start
and end char of selection. Useful for replacing text.

-change event fires on text fields after change occurs and focus is lost. input event fires every time a
char is entered, deleted, etc.

Checkboxes & Radio Buttons
-checkbox node has boolean checked property
-radio buttons fire change event when checked or unchecked

Select Fields
-review: <select> is dropdown menu allowing one selection or numerous if set with boolean
multiple attribute via [ctrl]+click

-value property for <select> node holds value of currently selected <option>
-options property for <select> node holds array-like obj containing all option values for a select
-<option> nodes have selected property

File Fields
-<file> nodes has files property which is an array-like obj of all selected files chosen, as file also
supports multiple attribute

-objects in files array have name (filename), size (bytes), type (ex. image/jpeg) and other properties

Storing Data Client-Side
-localstorage - global JS object. Has setItem("key", "value") and getItem("key", "value") methods
for storing and retrieving strings assigned to names.
-localstorege exists even on browser close until removed. Can remove with remove("key")
-sessionStorage - very similar global object, except clears on browser session end

Node.js

-A backend environment allowing i/o between server and client. Allows scripts to run server-side,
and interact with clients, or simply perform actions server-side only, such as as a sort script for file
sorting on a local disk or a CLI web scraper. Helps better streamline asynch programming to
transfer data between multiple clients at the same time.

-Commands run from system terminal

The Node Command
-node scriptToRun.js - runs script on server. Output displayed in terminal. If run without script arg,
displays prompt where you can interactively enter and run JS code. process.exit(0) to exit.
-process.arg - holds args passed to node. Array. Can call when inputting code from command line.

Modules
-Can import relative path moduleX to be used in ModuleY.js file by calling global require(/path),
where paths follows standard ./, .., / etc. style.
-Can also import built in or installed module (ex. React modules) via require("moduleName")
-Don't forget to include export statements if wish to import modules
-Can omit .js when importing

Installing with NPM
-Similar in use to linux package managers
-npm install packageName - fetches and installs. Installed packages in node_modules.
-Load via require("ini") or import {something, somethingElse} from ...

Package Files
-When run npm init, package.json file created. json file holding author name, description,
dependencies, etc.

Versions
-Node generates version num in 2.3.0 semantic versioning format, where first digit increments when
functionality is added that breaks compatibility. Second digit increases when functionality added
that doesn't break compatibility.
-If version has ^ prior to it, any version version of the first digit may be called, as long as the second
digit is greater than or equal to specified
-Can publish a package with npm publish in dir that holds package.json file. Published packages
must be uniquely named and will be available to other NPM users.

File System Module
-fs module. Contains functions for working with files and dirs. Import with require() or import

-readFile("filePath/name.txt", "utf8", handlingFunction) - reads in file of specified char encoding
and passes to handling function

-writeFile("filePath/name.txt", "text to write", errorHandlingFunction) - writes text to file in utf-8
or produces error as specified by errorHandlingFunction if write fails

-readdir("filePath", callback) - callback function gets files array containing list of files in path or
err if fails

-rename("oldPath", "newPath, callback) - callback gets err if rename fails

-Node also can call functions which return promises, for asynch exe

The HTTP Module
-http - Creates an runs and http server, which can take and respond to http requests

-Basics:

let server = createServer((request, response) => { //request = client req, resp for resp
response.writeHead(…) //writes response headers
response.write(…) //writes response body
response.end() //end of response
});

server.listen(8000); //opens connections for port localhost:8000

-Can act as request via request({request}, response.method);

 requestStream.end();

-Many node packages available on NPM to make http server interaction less verbose, like node-
fetch, express.js, etc.

Streams
-Writable stream - an abstraction for writing streaming data to a destination (ex. request object
returned from http request).
-write - method for node writable streams to write with. Take a string or of Buffer object as input to
write to spefied destination. Also can take a callback to call when done writing.
-Can write stream to file with createWriteStream from fs

-Readable streams have data and end events, where data fires when data comes in, end when
stream ended. Can read from via createReadStream from fs

